PHYSICS

Aristotle
Contents

Preface .. ii
Acknowledgements v
Note to the Reader vi

PHYSICS ... 2
BOOK I .. 2
BOOK II ... 19
BOOK III ... 35
BOOK IV ... 50
BOOK V ... 79
BOOK VI ... 94
BOOK VII ... 115
BOOK VIII ... 128
BENJAMIN JOWETT1 published his translation of Aristotle’s \textit{Politics} in 1885, and he nursed the desire to see the whole of Aristotle done into English. In his will he left the perpetual copyright on his writings to Balliol College, desiring that any royalties should be invested and that the income from the investment should be applied “in the first place to the improvement or correction” of his own books, and “secondly to the making of New Translations or Editions of Greek Authors.” In a codicil to the will, appended less than a month before his death, he expressed the hope that “the translation of Aristotle may be finished as soon as possible.”

The Governing Body of Balliol duly acted on Jowett’s wish: J. A. Smith, then a Fellow of Balliol and later Waynflete Professor of Moral and Metaphysical Philosophy, and W. D. Ross, a Fellow of Oriel College, were appointed as general editors to supervise the project of translating all of Aristotle’s writings into English; and the College came to an agreement with the Delegates of the Clarendon Press for the publication of the work. The first volume of what came to be known as The Oxford Translation of Aristotle appeared in 1908. The work continued under the joint guidance of Smith and Ross, and later under Ross’s sole editorship. By 1930, with the publication of the eleventh volume, the whole of the standard \textit{corpus aristotelicum} had been put into English. In 1954 Ross added a twelfth volume, of selected fragments, and thus completed the task begun almost half a century earlier.

The translators whom Smith and Ross collected together included the most eminent English Aristotelians of the age; and the translations reached a remarkable standard of scholarship and fidelity to the text. But no translation is perfect, and all translations date: in 1976, the Jowett Trustees, in whom the copyright of the Translation lies, determined to commission a revision of the entire text. The Oxford Translation was to remain in substance its original self; but alterations were to be made, where advisable, in the light of recent scholarship and with the requirements of modern readers in mind.

The present volumes thus contain a revised Oxford Translation: in all but three treatises, the original versions have been conserved with only mild emendations.

1The text of \textit{Aristotle: The Complete Works} is The Revised Oxford Translation of \textit{The Complete Works of Aristotle}, edited by Jonathan Barnes, and published by Princeton University Press in 1984. Each reference line contains the approximate Bekker number range of the paragraph if the work in question was included in the Bekker edition.
(The three exceptions are the *Categories* and *de Interpretatione*, where the translations of J. L. Ackrill have been substituted for those of E. M. Edgehill, and the *Posterior Analytics*, where G. R. G. Mure’s version has been replaced by that of J. Barnes. The new translations have all been previously published in the Clarendon Aristotle series.) In addition, the new Translation contains the tenth book of the *History of Animals*, and the third book of the *Economics*, which were not done for the original Translation; and the present selection from the fragments of Aristotle’s lost works includes a large number of passages which Ross did not translate.

In the original Translation, the amount and scope of annotation differed greatly from one volume to the next: some treatises carried virtually no footnotes, others (notably the biological writings) contained almost as much scholarly commentary as text—the work of Ogle on the *Parts of Animals* or of d’Arcy Thompson on the *History of Animals*, Beare’s notes to *On Memory* or Joachim’s to *On Indivisible Lines*, were major contributions to Aristotelian scholarship. Economy has demanded that in the revised Translation annotation be kept to a minimum; and all the learned notes of the original version have been omitted. While that omission represents a considerable impoverishment, it has reduced the work to a more manageable bulk, and at the same time it has given the constituent translations a greater uniformity of character. It might be added that the revision is thus closer to Jowett’s own intentions than was the original Translation.

The revisions have been slight, more abundant in some treatises than in others but amounting, on the average, to some fifty alterations for each Bekker page of Greek. Those alterations can be roughly classified under four heads.

(i) A quantity of work has been done on the Greek text of Aristotle during the past half century: in many cases new and better texts are now available, and the reviser has from time to time emended the original Translation in the light of this research. (But he cannot claim to have made himself intimate with all the textual studies that recent scholarship has thrown up.) A standard text has been taken for each treatise, and the few departures from it, where they affect the sense, have been indicated in footnotes. On the whole, the reviser has been conservative, sometimes against his inclination.

(ii) There are occasional errors or infelicities of translation in the original version: these have been corrected insofar as they have been observed.

(iii) The English of the original Translation now seems in some respects archaic in its vocabulary and in its syntax: no attempt has been made to impose a consistently modern style upon the translations, but where archaic English might mislead the modern reader, it has been replaced by more current idiom.
(iv) The fourth class of alterations accounts for the majority of changes made by the reviser. The original Translation is often paraphrastic: some of the translators used paraphrase freely and deliberately, attempting not so much to English Aristotle’s Greek as to explain in their own words what he was intending to convey—thus translation turns by slow degrees into exegesis. Others construed their task more narrowly, but even in their more modest versions expansive paraphrase from time to time intrudes. The revision does not pretend to eliminate paraphrase altogether (sometimes paraphrase is venial; nor is there any precise boundary between translation and paraphrase); but it does endeavor, especially in the logical and philosophical parts of the corpus, to replace the more blatantly exegetical passages of the original by something a little closer to Aristotle’s text.

The general editors of the original Translation did not require from their translators any uniformity in the rendering of technical and semitechnical terms. Indeed, the translators themselves did not always strive for uniformity within a single treatise or a single book. Such uniformity is surely desirable; but to introduce it would have been a massive task, beyond the scope of this revision. Some effort has, however, been made to remove certain of the more capricious variations of translation (especially in the more philosophical of Aristotle’s treatises).

Nor did the original translators try to mirror in their English style the style of Aristotle’s Greek. For the most part, Aristotle is terse, compact, abrupt, his arguments condensed, his thought dense. For the most part, the Translation is flowing and expansive, set out in well-rounded periods and expressed in a language which is usually literary and sometimes orotund. To that extent the Translation produces a false impression of what it is like to read Aristotle in the original; and indeed it is very likely to give a misleading idea of the nature of Aristotle’s philosophizing, making it seem more polished and finished than it actually is. In the reviser’s opinion, Aristotle’s sinewy Greek is best translated into correspondingly tough English; but to achieve that would demand a new translation, not a revision. No serious attempt has been made to alter the style of the original—a style which, it should be said, is in itself elegant enough and pleasing to read.

The reviser has been aided by several friends; and he would like to acknowledge in particular the help of Mr. Gavin Lawrence and Mr. Donald Russell. He remains acutely conscious of the numerous imperfections that are left. Yet—as Aristotle himself would have put it—the work was laborious, and the reader must forgive the reviser for his errors and give him thanks for any improvements which he may chance to have effected.

March 1981 J. B.
ACKNOWLEDGMENTS

THE TRANSLATIONS of the Categories and the de Interpretatione are reprinted here by permission of Professor J. L. Ackrill and Oxford University Press (© Oxford University Press, 1963); the translation of the Posterior Analytics is reprinted by permission of Oxford University Press (© Oxford University Press, 1975); the translation of the third book of the Economics is reprinted by permission of The Loeb Classical Library (William Heinemann and Harvard University Press); the translation of the fragments of the Protrepticus is based, with the author’s generous permission, on the version by Professor Ingemar Düring.
NOTE TO THE READER

THE TRADITIONAL *corpus aristotelicum* contains several works which were certainly or probably not written by Aristotle. A single asterisk against the title of a work indicates that its authenticity has been seriously doubted; a pair of asterisks indicates that its spuriousness has never been seriously contested. These asterisks appear both in the Table of Contents and on the title pages of the individual works concerned.

The title page of each work contains a reference to the edition of the Greek text against which the translation has been checked. References are by editor’s name, series or publisher (OCT stands for Oxford Classical Texts), and place and date of publication. In those places where the translation deviates from the chosen text and prefers a different reading in the Greek, a footnote marks the fact and indicates which reading is preferred; such places are rare.

The numerals printed in the outer margins key the translation to Immanuel Bekker’s standard edition of the Greek text of Aristotle of 1831. References consist of a page number, a column letter, and a line number. Thus “1343a” marks column one of page 1343 of Bekker’s edition; and the following “5,” “10,” “15,” etc. stand against lines 5, 10, 15, etc. of that column of text. Bekker references of this type are found in most editions of Aristotle’s works, and they are used by all scholars who write about Aristotle.
PHYSICS
§ 1 · When the objects of an inquiry, in any department, have principles, causes, or elements, it is through acquaintance with these that knowledge and understanding is attained. For we do not think that we know a thing until we are acquainted with its primary causes or first principles, and have carried our analysis as far as its elements. Plainly, therefore, in the science of nature too our first task will be to try to determine what relates to its principles.

The natural way of doing this is to start from the things which are more knowable and clear to us and proceed towards those which are clearer and more knowable by nature; for the same things are not knowable relatively to us and knowable without qualification. So we must follow this method and advance from what is more obscure by nature, but clearer to us, towards what is more clear and more knowable by nature.

Now what is to us plain and clear at first is rather confused masses, the elements and principles of which become known to us later by analysis. Thus we must advance from universals to particulars; for it is a whole that is more knowable to sense-perception, and a universal is a kind of whole, comprehending many things within it, like parts. Much the same thing happens in the relation of the

2 TEXT: W. D. Ross, OCT, Oxford, 1950
name to the formula. A name, e.g. ‘circle’, means vaguely a sort of whole: its definition analyses this into particulars. Similarly a child begins by calling all men father, and all women mother, but later on distinguishes each of them.

§ 2 · The principles in question must be either one or more than one. If one, it must be either motionless, as Parmenides and Melissus assert, or in motion, as the physicists hold, some declaring air to be the first principle, others water. If more than one, then either a finite or an infinite plurality. If finite (but more than one), then either two or three or four or some other number. If infinite, then either as Democritus believed one in kind, but differing in shape; or different in kind and even contrary.

A similar inquiry is made by those who inquire into the number of existents; for they inquire whether the ultimate constituents of existing things are one or many, and if many, whether a finite or an infinite plurality. So they are inquiring whether the principle or element is one or many.

Now to investigate whether what exists is one and motionless is not a contribution to the science of nature. For just as the geometer has nothing more to say to one who denies the principles of his science—this being a question for a different science or for one common to all—so a man investigating principles cannot argue with one who denies their existence. For if what exists is just one, and one in the way mentioned, there is a principle no longer, since a principle must be the principle of some thing or things.

To inquire therefore whether what exists is one in this sense would be like arguing against any other position maintained for the sake of argument (such as the Heraclitean thesis, or such a thesis as that what exists is one man) or like refuting a merely contentious argument—a description which applies to the arguments both of Melissus and of Parmenides: their premisses are false and their conclusions do not follow. Or rather the argument of Melissus is gross and offers no difficulty at all: accept one ridiculous proposition and the rest follows—a simple enough proceeding.

We, on the other hand, must take for granted that the things that exist by nature are, either all or some of them, in motion—which is indeed made plain by induction. Moreover, none is bound to solve every kind of difficulty that may be raised, but only as many as are drawn falsely from the principles of the science: it is not our business to refute those that do not arise in this way; just as it is the duty of the geometer to refute the squaring of the circle by means of segments, but it is not his duty to refute Antiphon’s proof. At the same time the holders of the theory of which we are speaking do incidentally raise physical questions, though nature
is not their subject; so it will perhaps be as well to spend a few words on them, especially as the inquiry is not without scientific interest.

The most pertinent question with which to begin will be this: In what sense is it asserted that all things are one? For ‘is’ is used in many ways. Do they mean that all things are substance or quantities or qualities? And, further, are all things one substance—one man, one horse, or one soul—or quality and that one and the same—white or hot or something of the kind? These are all very different doctrines and all impossible to maintain.

For if both substance and quantity and quality are, then, whether these exist independently of each other or not, what exists will be many.

If on the other hand it is asserted that all things are quality or quantity, then, whether substance exists or not, an absurdity results, if indeed the impossible can properly be called absurd. For none of the others can exist independently except substance; for everything is predicated of substance as subject. Now Melissus says that what exists is infinite. It is then a quantity. For the infinite is in the category of quantity, whereas substance or quality or affection cannot be infinite except accidentally, that is, if at the same time they are also quantities. For to define the infinite you must use quality in your formula, but not substance or quality. If then what exists is both substance and quantity, it is two, not one; if only substance, it is not infinite and has no magnitude; for to have that it will have to be a quantity.

Again, ‘one’ itself, no less than ‘is’, is used in many ways, so we must consider in what way the word is used when it is said that the universe is one.

Now we say that the continuous is one or that the indivisible is one, or things are said to be one, when the account of their essence is one and the same, as liquor and drink.

If their One is one in the sense of continuous, it is many; for the continuous is divisible ad infinitum.

There is, indeed, a difficulty about part and whole, perhaps not relevant to the present argument, yet deserving consideration on its own account—namely, whether the part and the whole are one or more than one, and in what way they can be one or many, and, if they are more than one, in what way they are more than one. (Similarly with the parts of wholes which are not continuous.) Further, if each of the two parts is indivisibly one with the whole, the difficulty arises that they will be indivisibly one with each other also.

But to proceed: If their One is one as indivisible, nothing will have quantity or quality, and so what exists will not be infinite, as Melissus says—nor, indeed, limited, as Parmenides says; for though the limit is indivisible, the limited is not.
But if all things are one in the sense of having the same definition, like raiment and dress, then it turns out that they are maintaining the Heraclitean doctrine, for it will be the same thing to be good and to be bad, and to be good and to be not good, and so the same thing will be good and not good, and man and horse; in fact, their view will be, not that all things are one, but that they are nothing; and that to be of such-and-such a quality is the same as to be of such-and-such a quantity.

Even the more recent of the ancient thinkers were in a pother lest the same thing should turn out in their hands both one and many. So some, like Lycophron, were led to omit ‘is’, others to change the mode of expression and say ‘the man has been whitened’ instead of ‘is white’, and ‘walks’ instead of ‘is walking’, for fear that if they added the word ‘is’ they should be making the one to be many—as if ‘one’ and ‘is’ were always used in one and the same way. What is may be many either in definition (for example to be white is one thing, to be musical another, yet the same thing may be both, so the one is many) or by division, as the whole and its parts. On this point, indeed, they were already getting into difficulties and admitted that the one was many—as if there was any difficulty about the same thing being both one and many, provided that these are not opposites; for what is one may be either potentially one or actually one.

§ 3 · If, then, we approach the thesis in this way it seems impossible for all things to be one. Further, the arguments they use to prove their position are not difficult to expose. For both of them reason contentiously—I mean both Melissus and Parmenides. [Their premises are false and their conclusions do not follow. Or rather the argument of Melissus is gross and offers no difficulty at all: admit one ridiculous proposition and the rest follows—a simple enough proceeding.]3

The fallacy of Melissus is obvious. For he supposes that the assumption ‘what has come into being always has a beginning’ justifies the assumption ‘what has not come into being has no beginning’. Then this also is absurd, that in every case there should be a beginning of the thing—not of the time and not only in the case of coming to be simpliciter but also in the case of qualitative change—as if change never took place all at once. Again, does it follow that what is, if one, is motionless? Why should it not move, the whole of it within itself, as parts of it do which are unities, e.g. this water? Again, why is qualitative change impossible? But, further, what is cannot be one in form, though it may be in what it is made of. (Even some of the physicists hold it to be one in the latter way, though not in the former.) Man obviously differs from horse in form, and contraries from each other.

3The bracketed words are probably wrongly inserted from 185a9-12.
The same kind of argument holds good against Parmenides also, besides any that may apply specially to his view: the answer to him being that this is not true and that does not follow. His assumption that ‘is’ is used in a single way only is false, because it is used in several. His conclusion does not follow, because if we take only white things, and if ‘white’ has a single meaning, none the less what is white will be many and not one. For what is white will not be one either in the sense that it is continuous or in the sense that it must be defined in only one way. Whiteness will be different from what has whiteness. Nor does this mean that there is anything that can exist separately, over and above what is white. For whiteness and that which is white differ in definition, not in the sense that they are things which can exist apart from each other. But Parmenides had not come in sight of this distinction.

It is necessary for him, then, to assume not only that ‘is’ has the same meaning, of whatever it is predicated, but further that it means what just is and what is just one. For an attribute is predicated of some subject, so that the subject to which ‘is’ is attributed will not be, as it is something different from being. Something, therefore, which is not will be. Hence what just is will not belong to anything else. For the subject cannot be a being, unless ‘is’ means several things, in such a way that each is something. But ex hypothesi ‘is’ means only one thing.

If, then, what just is is not attributed to anything, but other things are attributed to it, how does what just is mean what is rather than what is not? For suppose that what just is is also white, and that being white is not what just is (for being cannot even be attributed to white, since nothing is which is not what just is), it follows that what is white is not—and that not in the sense of not being something or other, but in the sense that it is not at all. Hence what just is is not; for it is true to say that it is white, and we found this to mean what is not. So ‘white’ must also mean what just is; and then ‘is’ has more than one meaning.

In particular, then, what is will not have magnitude, if it is what just is. For each of the two parts must be in a different way.

What just is is plainly divisible into other things which just are, if we consider the mere nature of a definition. For instance, if man is, what just is, animal and biped must also be what just is. For if not, they must be attributes—and if attributes, attributes either of man or of some other subject. But neither is possible.

For an attribute is either that which may or may not belong to the subject or that in whose definition the subject of which it is an attribute is involved. Thus sitting is an example of a separable attribute, while snubness contains the definition of nose, to which we attribute snubness. Further, the definition of the whole is not contained in the definitions of the contents or elements of the definitory formula;
that of man for instance in biped, or that of white man in white. If then this is so, and if biped is supposed to be an attribute of man, it must be either separable, so that man might possibly not be biped, or the definition of man must come into the definition of biped—which is impossible, as the converse is the case.

If, on the other hand, we suppose that biped and animal are attributes not of man but of something else, and are not each of them what just is, then man too will be an attribute of something else. But we must assume that what just is is not the attribute of anything, and that the subject of which both biped and animal are predicated is the subject also of the complex. Are we then to say that the universe is composed of indivisibles?

Some thinkers did, in point of fact, give way to both arguments. To the argument that all things are one if being means one thing, they conceded that what is not is; to that from bisection, they yielded by positing atomic magnitudes. But obviously it is not true that if being means one thing, and nothing can at the same time both be and not be, there will be nothing which is not; for even if what is not cannot be without qualification, there is no reason why it should not be something or other. To say that all things will be one, if there is nothing besides what is itself, is absurd. For who understands ‘what is itself’ to be anything but some particular thing? But if this is so, there is still nothing to prevent there being many beings, as has been said.

It is, then, clearly impossible for what is to be one in this sense.

§ 4 · The physicists on the other hand have two modes of explanation.

The first set make the underlying body one—either one of the three or something else which is denser than fire and rarer than air—then generate everything else from this, and obtain multiplicity by condensation and rarefaction. (Now these are contraries, which may be generalized into excess and defect. Compare Plato’s ‘Great and Small’—except that he makes these his matter, the one his form, while the others treat the one which underlies as matter and the contraries as differentiae, i.e. forms.)

The second set assert that the contrarieties are contained in the one and emerge from it by segregation, for example Anaximander and also all those who assert that what is is one and many, like Empedocles and Anaxagoras; for they too produce other things from their mixture by segregation. These differ, however, from each other in that the former imagines a cycle of such changes, the latter a single series. Anaxagoras again made both his homogeneous substances and his contraries infinite, whereas Empedocles posits only the so-called elements.

\[4\] I.e. water, air, fire.
The theory of Anaxagoras that the principles are infinite was probably due to his acceptance of the common opinion of the physicists that nothing comes into being from what is not. (For this is the reason why they use the phrase ‘all things were together’ and the coming into being of such and such a kind of thing is reduced to change of quality, while some spoke of combination and separation.) Moreover, the fact that the contraries come into being from each other led them to the conclusion. The one, they reasoned, must have already existed in the other; for since everything that comes into being must arise either from what is or from what is not, and it is impossible for it to arise from what is not (on this point all the physicists agree), they thought that the truth of the alternative necessarily followed, namely that things come into being out of existent things, i.e. out of things already present, but imperceptible to our senses because of the smallness of their bulk. So they assert that everything has been mixed in everything, because they saw everything arising out of everything. But things, as they say, appear different from one another and receive different names according to what is numerically predominant among the innumerable constituents of the mixture. For nothing, they say, is purely and entirely white or black or sweet, or bone or flesh, but the nature of a thing is held to be that of which it contains the most.

Now the infinite qua infinite is unknowable, so that what is infinite in multitude or size is unknowable in quantity, and what is infinite in variety of kind is unknowable in quality. But the principles in question are infinite both in multitude and in kind. Therefore it is impossible to know things which are composed of them; for it is when we know the nature and quantity of its components that we suppose we know a complex.

Further, if the parts of a whole may be indefinitely big or small (by parts I mean components into which a whole can be divided and which are actually present in it), it is necessary that the whole thing itself may also be of any size. Clearly, therefore, if it is impossible for an animal or plant to be indefinitely big or small, neither can its parts be such, or the whole will be the same. But flesh, bone, and the like are the parts of animals, and the fruits are the parts of plants. Hence it is obvious that neither flesh, bone, nor any such thing can be of indefinite size in the direction either of the greater or of the less.

Again, according to the theory all such things are already present in one another and do not come into being but are constituents which are separated out, and a thing receives its designation from its chief constituent. Further, anything may come out of anything—water by segregation from flesh and flesh from water. Hence, since every finite body is exhausted by the repeated abstraction of a finite body, it is evident that everything cannot subsist in everything else. For let flesh
be extracted from water and again more flesh be produced from the remainder by repeating the process of separation; then, even though the quantity separated out will continually decrease, still it will not fall below a certain magnitude. If, therefore, the process comes to an end, everything will not be in everything else (for there will be no flesh in the remaining water); if on the other hand it does not, and further extraction is always possible, there will be an infinite multitude of finite equal parts in a finite quantity—which is impossible. Another proof may be added: since every body must diminish in size when something is taken from it, and flesh is quantitatively definite in respect both of greatness and smallness, it is clear that from the minimum quantity of flesh no body can be separated out; for the flesh left would be less than the minimum of flesh.

Again, in each of his infinite bodies there would be already present infinite flesh and blood and brain—having a distinct existence, however, from one another, and no less real than the infinite bodies, and each infinite: which is contrary to reason.

The statement that complete separation never will take place is correct enough, though Anaxagoras is not fully aware of what it means. For affections are indeed inseparable. If then colours and states had entered into the mixture, and if separation took place, there would be something white or healthy which was nothing but white or healthy, i.e. was not the predicate of a subject. So his Mind absurdly aims at the impossible, if it is supposed to wish to separate them, and it is impossible to do so, both in respect of quantity and of quality—of quantity, because there is no minimum magnitude, and of quality, because affections are inseparable.

Nor is Anaxagoras right about the coming to be of homogeneous bodies. It is true there is a sense in which clay is divided into pieces of clay, but there is another in which it is not. Water and air are, and are generated, from each other, but not in the way in which bricks come from a house and again a house from bricks. And it is better to assume a smaller and finite number of principles, as Empedocles does.

All thinkers then agree in making the contraries principles, both those who describe the universe as one and unmoved (for even Parmenides treats hot and cold as principles under the names of fire and earth) and those too who use the rare and the dense. The same is true of Democritus also, with his plenum and void, both of which exist, he says, the one as being, the other as not being. Again he speaks of differences in position, shape, and order, and these are genera of which the species are contraries, namely, of position, above and below, before and after.

\(^5\) Retaining the MS text; Ross reads: *kechorismena mentoi ap’ allelon [ou]* (‘not, however, separated from one another’).
behind; of shape, angular and angle-less, straight and round.

It is plain then that they all in one way or another identify the contraries with
the principles. And with good reason. For first principles must not be derived
from one another nor from anything else, while everything has to be derived from
them. But these conditions are fulfilled by the primary contraries, which are not
derived from anything else because they are primary, nor from each other because
they are contraries.

But we must see how this can be arrived at as a reasoned result. Our first
presupposition must be that in nature nothing acts on, or is acted on by, any other
thing at random, nor may anything come from anything else, unless we mean that
it does so accidentally. For how could white come from musical, unless musical
happened to be an attribute of the not-white or of the black? No, white comes from
not-white—and not from any not-white, but from black or some intermediate.
Similarly, musical comes to be from non-musical, but not from any thing other
than musical, but from unmusical or any intermediate state there may be.

Nor again do things pass away into the first chance thing; white does not pass
into musical (except, it may be, accidentally), but into not-white—and not into
any chance thing which is not white, but into black or an intermediate; musical
passes into not-musical—and not into any chance thing other than musical, but
into unmusical or any intermediate state there may be.

The same holds of other things also: even things which are not simple but
complex follow the same principle, but the opposite state has not received a name,
so we fail to notice the fact. For what is in tune must come from what is not
in tune, and vice versa; the tuned passes into untunedness—and not into any un-
tunedness, but into the corresponding opposite. It does not matter whether we take
attunement, order, or composition for our illustration; the principle is obviously
the same in all, and in fact applies equally to the production of a house, a statue, or
anything else. A house comes from certain things in a certain state of separation
instead of conjunction, a statue (or any other thing that has been shaped) from
shapelessness—each of these objects being partly order and partly composition.

If then this is true, everything that comes to be or passes away comes from, or
passes into, its contrary or an intermediate state. But the intermediates are derived
from the contraries—colours, for instance, from black and white. Everything,
therefore, that comes to be by a natural process is either a contrary or a product of
contraries.

Up to this point we have practically had most of the other writers on the subject
with us, as I have said already; for all of them identify their elements, and what
they call their principles, with the contraries, giving no reason indeed for the the-
ory, but constrained as it were by the truth itself. They differ, however, from one another in that some assume contraries which are prior, others contraries which are posterior; some those more knowable in the order of explanation, others those more familiar to sense. For some make hot and cold, or again moist and dry, the causes of becoming; while others make odd and even, or again Love and Strife; and these differ from each other in the way mentioned.

Hence their principles are in one sense the same, in another different; different certainly, as indeed most people think, but the same inasmuch as they are analogous; for all are taken from the same table of columns, some of the pairs being wider, others narrower in extent. In this way then their theories are both the same and different, some better, some worse; some, as I have said, take as their contraries what is more knowable in the order of explanation, others what is more familiar to sense. (The universal is knowable in the order of explanation, the particular in the order of sense; for explanation has to do with the universal, sense with the particular.) The great and the small, for example, belong to the former class, the dense and the rare to the latter.

It is clear then that our principles must be contraries.

§ 6 · The next question is whether the principles are two or three or more in number.

One they cannot be; for there cannot be one contrary. Nor can they be innumerable, because, if so, what is will not be knowable; and in any one genus there is only one contrariety, and substance is one genus; also a finite number is sufficient, and a finite number, such as the principles of Empedocles, is better than an infinite multitude; for Empedocles professes to obtain all that Anaxagoras obtains from his innumerable principles. Again, some contraries are prior to others, and some arise from others—for example sweet and bitter, white and black—whereas the principles must always remain principles.

This will suffice to show that the principles are neither one nor innumerable. Granted, then, that they are a limited number, it is plausible to suppose them more than two. For it is difficult to see how either density should be of such a nature as to act in any way on rarity or rarity on density. The same is true of any other pair of contraries; for Love does not gather Strife together and make things out of it, nor does Strife make anything out of Love, but both act on a third thing different from both. Some indeed assume more than one such thing from which they construct the world of nature.

Other objections to the view that it is not necessary to posit some other nature under the contraries may be added. We do not find that the contraries constitute
the substance of any thing. But what is a first principle ought not to be predicated of any subject. If it were, there would be a principle of the supposed principle; for the subject is a principle, and prior presumably to what is predicated of it. Again, we hold that a substance is not contrary to another substance. How then can substance be derived from what are not substances? Or how can non-substance be prior to substance?

If then we accept both the former argument and this one, we must, to preserve both, posit some third thing, such as is spoken of by those who describe the universe as one nature—water or fire or what is intermediate between them. What is intermediate seems preferable; for fire, earth, air, and water are already involved with pairs of contraries. There is, therefore, much to be said for those who make the underlying substance different from these four; of the rest, the next best choice is air, as presenting sensible differences in a less degree than the others; and after air, water. All, however, agree in this, that they differentiate their One by means of the contraries, such as density and rarity and more and less, which may of course be generalized, as has already been said, into excess and defect. Indeed this doctrine too (that the One and excess and defect are the principles of things) would appear to be of old standing, though in different forms; for the early thinkers made the two the active and the one the passive principle, whereas some of the more recent maintain the reverse.

To suppose then that the elements are three in number would seem, from these and similar considerations, a plausible view, as I said before. On the other hand, the view that they are more than three in number would seem to be untenable.

For one thing is sufficient to be acted on; but if we have four contraries, there will be two contrarieties, and we shall have to suppose an intermediate nature for each pair separately. If, on the other hand, the contrarieties, being two, can generate from each other, the second contrariety will be superfluous. Moreover, it is impossible that there should be more than one primary contrariety. For substance is a single genus of being, so that the principles can differ only as prior and posterior, not in genus; for in a single genus there is always a single contrariety, all the other contrarieties in it being held to be reducible to one.

It is clear then that the number of elements is neither one nor more than two or three; but whether two or three is, as I said, a question of considerable difficulty.

§ 7 · We will now give our own account, approaching the question first with reference to becoming in its widest sense; for we shall be following the natural order of inquiry if we speak first of common characteristics, and then investigate the characteristics of special cases.
We say that ‘one thing comes to be from another thing, and something from something different, in the case both of simple and of complex things. I mean the following. We can say the man becomes musical, or what is not-musical becomes musical, or the not-musical man becomes a musical man. Now what becomes in the first two cases—man and not-musical—I call simple, and what each becomes—musical—simple also. But when we say the not-musical man becomes a musical man, both what becomes and what it becomes are complex.

In some cases, we say not only this becomes so-and-so, but also from being this, it comes to be so-and-so (e.g.: from being not-musical he comes to be musical); but we do not say this in all cases, as we do not say from being a man he came to be musical but only the man became musical.

When a simple thing is said to become something, in one case it survives through the process, in the other it does not. For the man remains a man and is such even when he becomes musical, whereas what is not musical or is unmusical does not survive, either simply or combined with the subject.

These distinctions drawn, one can gather from surveying the various cases of becoming in the way we are describing that there must always be an underlying something, namely that which becomes, and that this, though always one numerically, in form at least is not one. (By ‘in form’ I mean the same as ‘in account’.) For to be a man is not the same as to be unmusical. One part survives, the other does not: what is not an opposite survives (for the man survives), but not-musical or unmusical does not survive, nor does the compound of the two, namely the unmusical man.

We speak of ‘becoming that from this’ instead of ‘this becoming that’ more in the case of what does not survive the change—’becoming musical from unmusical’, not ‘from man’—but we sometimes use the latter form of expression even of what survives; we speak of a statue coming to be from bronze, not of the bronze becoming a statue. The change, however, from an opposite which does not survive is described in both ways, ‘becoming that from this’ or ‘this becoming that’. We say both that the unmusical becomes musical, and that from unmusical he becomes musical. And so both forms are used of the complex, ‘becoming a musical from an unmusical man’, and ‘an unmusical man becoming musical’.

Things are said to come to be in different ways. In some cases we do not use the expression ‘come to be’, but ‘come to be so-and-so’. Only substances are said to come to be without qualification.

Now in all cases other than substance it is plain that there must be something underlying, namely, that which becomes. For when a thing comes to be of such a
quantity or quality or in such a relation, time, or place, a subject is always presupposed, since substance alone is not predicated of another subject, but everything else of substance.

But that substances too, and anything that can be said to be without qualification, come to be from some underlying thing, will appear on examination. For we find in every case something that underlies from which proceeds that which comes to be; for instance, animals and plants from seed.

Things which come to be without qualification, come to be in different ways: by change of shape, as a statue; by addition, as things which grow; by taking away, as the Hermes from the stone; by putting together, as a house; by alteration, as things which turn in respect of their matter.

It is plain that these are all cases of coming to be from some underlying thing.

Thus, from what has been said, whatever comes to be is always complex. There is, on the one hand, something which comes to be, and again something which becomes that—the latter in two senses, either the subject or the opposite. By the opposite I mean the unmusical, by the subject, man; and similarly I call the absence of shape or form or order the opposite, and the bronze or stone or gold the subject.

Plainly then, if there are causes and principles which constitute natural objects and from which they primarily are or have come to be—have come to be, I mean, what each is said to be in its substance, not what each is accidentally—plainly, I say, everything comes to be from both subject and form. For the musical man is composed in a way of man and musical: you can analyse it into the definitions of its elements. It is clear then that what comes to be will come to be from these elements.

Now the subject is one numerically, though it is two in form. (For there is the man, the gold—in general, the countable matter; for it is more of the nature of a ‘this’, and what comes to be does not come from it accidentally; the privation, on the other hand, and the contrariety are accidental.) And the form is one—the order, the art of music, or any similar predicate.

There is a sense, therefore, in which we must declare the principles to be two, and a sense in which they are three; a sense in which the contraries are the principles—say for example the musical and the unmusical, the hot and the cold, the tuned and the untuned—and a sense in which they are not, since it is impossible for the contraries to be acted on by each other. But this difficulty also is solved by the fact that what underlies is different from the contraries; for it is

6 Ross excises ‘time’.
itself not a contrary. The principles therefore are, in a way, not more in number than the contraries, but as it were two; nor yet precisely two, since there is a difference of being, but three. For to be man is different from to be unmusical, and to be unformed from to be bronze.

We have now stated the number of the principles of natural objects which are subject to generation, and how the number is reached; and it is clear that there must be something underlying the contraries, and that the contraries must be two. (Yet in another way of putting it this is not necessary, as one of the contraries will serve to effect the change by its absence and presence.)

The underlying nature can be known by analogy. For as the bronze is to the statue, the wood to the bed, or the matter and7 the formless before receiving form to any thing which has form, so is the underlying nature to substance, i.e. the ‘this’ or existent.

This then is one principle (though not one or existent in the same sense as the ‘this’); one is the form or definition;8 then further there is its contrary, the privation. In what sense these are two, and in what sense more, has been stated above. We explained first that only the contraries were principles, and later that something else underlay them, and that the principles were three; our last statement has elucidated the difference between the contraries, the mutual relation of the principles, and the nature of what underlies. Whether the form or what underlies is the substance is not yet clear. But that the principles are three, and in what sense, and the way in which each is a principle, is clear.

So much then for the question of the number and the nature of the principles.

§ 8 · We will now proceed to show that the difficulty of the early thinkers, as well as our own, is solved in this way alone.

The first of those who studied philosophy were misled in their search for truth and the nature of things by their inexperience, which as it were thrust them into another path. So they say that none of the things that are either comes to be or passes out of existence, because what comes to be must do so either from what is or from what is not, both of which are impossible. For what is cannot come to be (because it \textit{is} already), and from what is not nothing could have come to be (because something must be underlying). So too they exaggerated the consequence of this, and went so far as to deny even the \textit{existence} of a plurality of things maintaining that only what is itself is. Such then was their opinion, and such the reason for its adoption.

7Ross omits ‘the matter and’.

8Reading \textit{mia to eidos e ho logos} (Bonitz).
Our explanation on the other hand is that for something to come to be from what is or from what is not, or what is not or what is to do something or have something done to it or become some particular thing, are in one way no different from a doctor doing something or having something done to him, or being or becoming something from being a doctor. These expressions may be taken in two ways, and so too, clearly, may ‘from what is’, and ‘what is acts or is acted on’. A doctor builds a house, not \textit{qua} doctor, but \textit{qua} housebuilder, and turns gray, not \textit{qua} doctor, but \textit{qua} dark-haired. On the other hand he doctors or fails to doctor \textit{qua} doctor. But we are using words most appropriately when we say that a doctor does something or undergoes something, or becomes something from being a doctor, if he does, undergoes, or becomes \textit{qua} doctor. Clearly then also to come to be so-and-so from what is not means ‘\textit{qua} what is not’.

It was through failure to make this distinction that those thinkers gave the matter up, and through this error that they went so much farther astray as to suppose that nothing else comes to be or exists apart from what is itself, thus doing away with all becoming.

We ourselves are in agreement with them in holding that nothing can be said without qualification to come from what is not. But nevertheless we maintain that a thing may come to be from what is not in a qualified sense, i.e. accidentally. For a thing comes to be from the privation, which in its own nature is something which is not—this not surviving as a constituent of the result. Yet this causes surprise, and it is thought impossible that something should come to be in the way described from what is not.

In the same way we maintain that nothing comes to be from what is, and that what is does not come to be except accidentally. In that way, however, it does, just as animal might come to be from animal, and an animal of a certain kind from an animal of a certain kind. Thus, suppose a dog to come to be from a dog, or a horse from a horse. The dog would then, it is true, come to be from animal (as well as from an animal of a certain kind) but not as \textit{animal}, for that is already there. But if anything is to become an animal, \textit{not accidentally}, it will not be from animal; and if what is, not from what is—nor from what is not either, for it has been explained that by ‘from what is not’ we mean \textit{qua} what is not.

Note further that we do not subvert the principle that everything either is or is not.

This then is one way of solving the difficulty. Another consists in pointing out that the same things can be spoken of in terms of potentiality and actuality. But
this has been done with greater precision elsewhere.

So, as we said, the difficulties which constrain people to deny the existence of some of the things we mentioned are now solved. For it was this reason which also caused some of the earlier thinkers to turn so far aside from the road which leads to coming to be and passing away and change generally. If they had come in sight of this nature, all their ignorance would have been dispelled.

§ 9. Others, indeed, have apprehended the nature in question, but not adequately.

In the first place they allow that a thing may come to be without qualification from what is not, accepting on this point the statement of Parmenides. Secondly, they think that if it is one numerically, it must have also only a single potentiality—which is a very different thing.

Now we distinguish matter and privation, and hold that one of these, namely the matter, accidentally is not, while the privation in its own nature is not; and that the matter is nearly, in a sense is, substance, while the privation in no sense is. They, on the other hand, identify their Great and Small alike with what is not, and that whether they are taken together as one or separately. Their triad is therefore of quite a different kind from ours. For they got so far as to see that there must be some underlying nature, but they make it one—for even if one philosopher makes a dyad of it, which he calls Great and Small, the effect is the same; for he overlooked the other nature. For the one which persists is a joint cause, with the form, of what comes to be—a mother, as it were. But the other part of the contrariety may often seem, if you concentrate your attention on it as an evil agent, not to exist at all.

For admitting that there is something divine, good, and desirable, we hold that there are two other principles, the one contrary to it, the other such as of its own nature to desire and yearn for it. But the consequence of their view is that the contrary desires its own extinction. Yet the form cannot desire itself, for it is not defective; nor can the contrary desire it, for contraries are mutually destructive. The truth is that what desires the form is matter, as the female desires the male and the ugly the beautiful—only the ugly or the female not in itself but accidentally.

The matter comes to be and ceases to be in one sense, while in another it does not. As that which contains the privation, it ceases to be in its own nature; for what ceases to be—the privation—is contained within it. But as potentiality it does not cease to be in its own nature, but is necessarily outside the sphere of becoming.

9See *Metaphysics D7*, and *Th.*
10I.e. Plato.
and ceasing to be. For if it came to be, something must have existed as a primary substratum from which it should come and which should persist in it; but this is its own very nature, so that it will be before coming to be. (For my definition of matter is just this—the primary substratum of each thing, from which it comes to be, and which persists in the result, not accidentally.) And if it ceases to be it will pass into that at the last, so it will have ceased to be before ceasing to be.

The accurate determination of the first principle in respect of form, whether it is one or many and what it is or what they are, is the province of first philosophy; so these questions may stand over till then. But of the natural, i.e. perishable, forms we shall speak in the expositions which follow.

The above, then, may be taken as sufficient to establish that there are principles and what they are and how many there are. Now let us make a fresh start and proceed.
§ 1 · Of things that exist, some exist by nature, some from other causes. By nature the animals and their parts exist, and the plants and the simple bodies (earth, fire, air, water)—for we say that these and the like exist by nature.

All the things mentioned plainly differ from things which are not constituted by nature. For each of them has within itself a principle of motion and of stationariness (in respect of place, or of growth and decrease, or by way of alteration). On the other hand, a bed and a coat and anything else of that sort, qua receiving these designations—i.e. in so far as they are products of art—have no innate impulse to change. But in so far as they happen to be composed of stone or of earth or of a mixture of the two, they do have such an impulse, and just to that extent—which seems to indicate that nature is a principle or cause of being moved and of being at rest in that to which it belongs primarily, in virtue of itself and not accidentally.

I say ‘not accidentally’, because (for instance) a man who is a doctor might himself be a cause of health to himself. Nevertheless it is not in so far as he is a patient that he possesses the art of medicine: it merely has happened that the same man is doctor and patient—and that is why these attributes are not always found together. So it is with all other artificial products. None of them has in itself the principle of its own production. But while in some cases (for instance houses and the other products of manual labour) that principle is in something else external to the thing, in others—those which may cause a change in themselves accidentally—it lies in the things themselves (but not in virtue of what they are).

Nature then is what has been stated. Things have a nature which have a principle of this kind. Each of them is a substance; for it is a subject, and nature is always in a subject.

The term ‘according to nature’ is applied to all these things and also to the attributes which belong to them in virtue of what they are, for instance the property of fire to be carried upwards—which is not a nature nor has a nature but is by nature or according to nature.

What nature is, then, and the meaning of the terms ‘by nature’ and ‘according to nature’, has been stated. That nature exists, it would be absurd to try to prove; for it is obvious that there are many things of this kind, and to prove what is obvious by what is not is the mark of a man who is unable to distinguish what is
self-evident from what is not. (This state of mind is clearly possible. A man blind
from birth might reason about colours.) Presumably therefore such persons must
be talking about words without any thought to correspond.

Some identify the nature or substance of a natural object with that immediate
constituent of it which taken by itself is without arrangement, e.g. the wood is the
nature of the bed, and the bronze the nature of the statue.

As an indication of this Antiphon points out that if you planted a bed and the
rotting wood acquired the power of sending up a shoot, it would not be a bed that
would come up, but wood which shows that the arrangement in accordance with
the rules of the art is merely an accidental attribute, whereas the substance is the
other, which, further, persists continuously through the process.

But if the material of each of these objects has itself the same relation to some-
thing else, say bronze (or gold) to water, bones (or wood) to earth and so on, that
(they say) would be their nature and substance. Consequently some assert earth,
others fire or air or water or some or all of these, to be the nature of the things
that are. For whatever any one of them supposed to have this character—whether
one thing or more than one thing—this or these he declared to be the whole of
substance, all else being its affections, states, or dispositions. Every such thing
they held to be eternal (for it could not pass into anything else), but other things
to come into being and cease to be times without number.

This then is one account of nature, namely that it is the primary underlying
matter of things which have in themselves a principle of motion or change.

Another account is that nature is the shape or form which is specified in the
definition of the thing.

For the word ‘nature’ is applied to what is according to nature and the natural
in the same way as ‘art’ is applied to what is artistic or a work of art. We should
not say in the latter case that there is anything artistic about a thing, if it is a bed
only potentially, not yet having the form of a bed; nor should we call it a work
of art. The same is true of natural compounds. What is potentially flesh or bone
has not yet its own nature, and does not exist by nature, until it receives the form
specified in the definition, which we name in defining what flesh or bone is. Thus
on the second account of nature, it would be the shape or form (not separable
except in statement) of things which have in themselves a principle of motion.
(The combination of the two, e.g. man, is not nature but by nature.)

The form indeed is nature rather than the matter; for a thing is more properly
said to be what it is when it exists in actuality than when it exists potentially.
Again man is born from man but not bed from bed. That is why people say that
the shape is not the nature of a bed, but the wood is—if the bed sprouted, not a
bed but wood would come up. But even if the shape is art, then on the same principle the shape of man is his nature. For man is born from man.

Again, nature in the sense of a coming-to-be proceeds towards nature. For it is not like doctoring, which leads not to the art of doctoring but to health. Doctoring must start from the art, not lead to it. But it is not in this way that nature is related to nature. What grows *qua* growing grows from something into something. Into what then does it grow? Not into that from which it arose but into that to which it tends. The shape then is nature.

Shape and nature are used in two ways. For the privation too is in a way form. But whether in unqualified coming to be there is privation, i.e. a contrary, we must consider later.

§ 2 · We have distinguished, then, the different ways in which the term ‘nature’ is used.

The next point to consider is how the mathematician differs from the student of nature; for natural bodies contain surfaces and volumes, lines and points, and these are the subject-matter of mathematics.

Further, is astronomy different from natural science or a department of it? It seems absurd that the student of nature should be supposed to know the nature of sun or moon, but not to know any of their essential attributes, particularly as the writers on nature obviously do discuss their shape and whether the earth and the world are spherical or not.

Now the mathematician, though he too treats of these things, nevertheless does not treat of them as the limits of a natural body; nor does he consider the attributes indicated as the attributes of such bodies. That is why he separates them; for in thought they are separable from motion, and it makes no difference, nor does any falsity result, if they are separated. The holders of the theory of Forms do the same, though they are not aware of it; for they separate the objects of natural science, which are less separable than those of mathematics. This becomes plain if one tries to state in each of the two cases the definitions of the things and of their attributes. Odd and even, straight and curved, and likewise number, line, and figure, do not involve motion; not so flesh and bone and man—these are defined like snub nose, not like curved.

Similar evidence is supplied by the more natural of the branches of mathematics, such as optics, harmonics, and astronomy. These are in a way the converse of geometry. While geometry investigates natural lines but not *qua* natural, optics investigates mathematical lines, but *qua* natural, not *qua* mathematical.

11Reading *techne*, with the MSS, for Ross’ *physis.*
Since two sorts of thing are called nature, the form and the matter, we must investigate its objects as we would the essence of snubness, that is neither independently of matter nor in terms of matter only. Here too indeed one might raise a difficulty. Since there are two natures, with which is the student of nature concerned? Or should he investigate the combination of the two? But if the combination of the two, then also each severally. Does it belong then to the same or to different sciences to know each severally?

If we look at the ancients, natural science would seem to be concerned with the matter. (It was only very slightly that Empedocles and Democritus touched on form and essence.)

But if on the other hand art imitates nature, and it is the part of the same discipline to know the form and the matter up to a point (e.g. the doctor has a knowledge of health and also of bile and phlegm, in which health is realized and the builder both of the form of the house and of the matter, namely that it is bricks and beams, and so forth): if this is so, it would be the part of natural science also to know nature in both its senses.

Again, that for the sake of which, or the end, belongs to the same department of knowledge as the means. But the nature is the end or that for the sake of which. For if a thing undergoes a continuous change toward some end, that last stage is actually that for the sake of which. (That is why the poet was carried away into making an absurd statement when he said ‘he has the end for the sake of which he was born’. For not every stage that is last claims to be an end, but only that which is best.)

For the arts make their material (some simply make it, others make it serviceable), and we use everything as if it was there for our sake. (We also are in a sense an end. ‘That for the sake of which’ may be taken in two ways, as we said in our work On Philosophy.) The arts, therefore, which govern the matter and have knowledge are two, namely the art which uses the product and the art which directs the production of it. That is why the using art also is in a sense directive; but it differs in that it knows the form, whereas the art which is directive as being concerned with production knows the matter. For the helmsman knows and prescribes what sort of form a helm should have, the other from what wood it should be made and by means of what operations. In the products of art, however, we make the material with a view to the function, whereas in the products of nature the matter is there all along.

12 Reading touto eschaton.
13 Omitting he architektonike.
Again, matter is a relative thing—for different forms there is different matter. How far then must the student of nature know the form or essence? Up to a point, perhaps, as the doctor must know sinew or the smith bronze (i.e. until he understands the purpose of each);\(^\text{14}\) and the student of nature is concerned only with things whose forms are separable indeed, but do not exist apart from matter. Man is begotten by man and by the sun as well. The mode of existence and essence of the separable it is the business of first philosophy to define.

§ 3 · Now that we have established these distinctions, we must proceed to consider causes, their character and number. Knowledge is the object of our inquiry, and men do not think they know a thing till they have grasped the ‘why’ of it (which is to grasp its primary cause). So clearly we too must do this as regards both coming to be and passing away and every kind of natural change, in order that, knowing their principles, we may try to refer to these principles each of our problems.

In one way, then, that out of which a thing comes to be and which persists, is called a cause, e.g. the bronze of the statue, the silver of the bowl, and the genera of which the bronze and the silver are species.

In another way, the form or the archetype, i.e. the definition of the essence, and its genera, are called causes (e.g. of the octave the relation of 2:1, and generally number), and the parts in the definition.

Again, the primary source of the change or rest; e.g. the man who deliberated is a cause, the father is cause of the child, and generally what makes of what is made and what changes of what is changed.

Again, in the sense of end or that for the sake of which a thing is done, e.g. health is the cause of walking about. (‘Why is he walking about?’ We say: ‘To be healthy’, and, having said that, we think we have assigned the cause.) The same is true also of all the intermediate steps which are brought about through the action of something else as means towards the end, e.g. reduction of flesh, purging, drugs, or surgical instruments are means towards health. All these things are for the sake of the end, though they differ from one another in that some are activities, others instruments.

This then perhaps exhausts the number of ways in which the term ‘cause’ is used.

As things are called causes in many ways, it follows that there are several causes of the same thing (not merely accidentally), e.g. both the art of the sculptor

\(^{14}\)Reading mechri tou · tinos gar (Jaeger).
and the bronze are causes of the statue. These are causes of the statue *qua* statue, not in virtue of anything else that it may be—only not in the same way, the one being the material cause, the other the cause whence the motion comes. Some things cause each other reciprocally, e.g. hard work causes fitness and *vice versa*, but again not in the same way, but the one as end, the other as the principle of motion. Further the same thing is the cause of contrary results. For that which by its presence brings about one result is sometimes blamed for bringing about the contrary by its absence. Thus we ascribe the wreck of a ship to the absence of the pilot whose presence was the cause of its safety.

All the causes now mentioned fall into four familiar divisions. The letters are the causes of syllables, the material of artificial products, fire and the like of bodies, the parts of the whole, and the premisses of the conclusion, in the sense of ‘that from which’. Of these pairs the one set are causes in the sense of what underlies, e.g. the parts, the other set in the sense of essence—the whole and the combination and the form. But the seed and the doctor and the deliberator, and generally the maker, are all sources whence the change or stationariness originates, which the others are causes in the sense of the end or the good of the rest; for that for the sake of which tends to be what is best and the end of the things that lead up to it. (Whether we call it good or apparently good makes no difference.)

Such then is the number and nature of the kinds of cause.

Now the modes of causation are many, though when brought under heads they too can be reduced in number. For things are called causes in many ways and even within the same kind one may be prior to another: e.g. the doctor and the expert are causes of health, the relation 2:1 and number of the octave, and always what is inclusive to what is particular. Another mode of causation is the accidental and its genera, e.g. in one way Polyclitus, in another a sculptor is the cause of a statue, because being Polyclitus and a sculptor are accidentally conjoined. Also the classes in which the accidental attribute is included; thus a man could be said to be the cause of a statue or, generally, a living creature. An accidental attribute too may be more or less remote, e.g. suppose that a pale man or a musical man were said to be the cause of the statue.

All causes, both proper and accidental, may be spoken of either as potential or as actual; e.g. the cause of a house being built is either a house-builder or a house-builder building.

Similar distinctions can be made in the things of which the causes are causes, e.g. of this statue or of a statue or of an image generally, of this bronze or of bronze or of material generally. So too with the accidental attributes. Again we may use a complex expression for either and say, e.g., neither ‘Polyclitus’ nor a
‘sculptor’ but ‘Polyclitus, the sculptor’.

All these various uses, however, come to six in number, under each of which again the usage is twofold. It is either what is particular or a genus, or an accidental attribute or a genus of that, and these either as a complex or each by itself; and all either as actual or as potential. The difference is this much, that causes which are actually at work and particular exist and cease to exist simultaneously with their effect, e.g. this healing person with this being-healed person and that house-building man with that being-built house; but this is not always true of potential causes—the house and the housebuilder do not pass away simultaneously.

In investigating the cause of each thing it is always necessary to seek what is most precise (as also in other things): thus a man builds because he is a builder, and a builder builds in virtue of his art of building. This last cause then is prior; and so generally.

Further, generic effects should be assigned to generic causes, particular effects to particular causes, e.g. statue to sculptor, this statue to this sculptor; and powers are relative to possible effects, actually operating causes to things which are actually being effected.

This must suffice for our account of the number of causes and the modes of causation.

§ 4 · But chance and spontaneity are also reckoned among causes: many things are said both to be and to come to be as a result of chance and spontaneity. We must inquire therefore in what manner chance and spontaneity are present among the causes enumerated, and whether they are the same or different, and generally what chance and spontaneity are.

Some people even question whether there are such things or not. They say that nothing happens by chance, but that everything which we ascribe to chance or spontaneity has some definite cause, e.g. coming by chance into the market and finding there a man whom one wanted but did not expect to meet is due to one’s wish to go and buy in the market. Similarly, in other so-called cases of chance it is always possible, they maintain, to find something which is the cause; but not chance, for if chance were real, it would seem strange indeed, and the question might be raised, why on earth none of the wise men of old in speaking of the causes of generation and decay took account of chance; whence it would seem that they too did not believe that anything is by chance. But there is a further circumstance that is surprising. Many things both come to be and are by chance and spontaneity, and although all know that each of them can be ascribed to some cause (as the old argument said which denied chance), nevertheless they all speak
of some of these things as happening by chance and others not. For this reason they ought to have at least referred to the matter in some way or other.

Certainly the early physicists found no place for chance among the causes which they recognized—love, strife, mind, fire, or the like. This is strange, whether they supposed that there is no such thing as chance or whether they thought there is but omitted to mention it—and that too when they sometimes used it, as Empedocles does when he says that the air is not always separated into the highest region, but as it may chance. At any rate he says in his cosmogony that ‘it happened to run that way at that time, but it often ran otherwise’. He tells us also that most of the parts of animals came to be by chance.

There are some who actually ascribe this heavenly sphere and all the worlds to spontaneity. They say that the vortex arose spontaneously, i.e. the motion that separated and arranged the universe in its present order. This statement might well cause surprise. For they are asserting that chance is not responsible for the existence or generation of animals and plants, nature or mind or something of the kind being the cause of them (for it is not any chance thing that comes from a given seed but an olive from one kind and a man from another); and yet at the same time they assert that the heavenly sphere and the divinest of visible things arose spontaneously, having no such cause as is assigned to animals and plants. Yet if this is so, it is a fact which deserves to be dwelt upon, and something might well have been said about it. For besides the other absurdities of the statement, it is the more absurd that people should make it when they see nothing coming to be spontaneously in the heavens, but much happening by chance among the things which as they say are not due to chance; whereas we should have expected exactly the opposite.

Others there are who believe that chance is a cause, but that it is inscrutable to human intelligence, as being a divine thing and full of mystery.

Thus we must inquire what chance and spontaneity are, whether they are the same or different, and how they fit into our division of causes.

§ 5 · First then we observe that some things always come to pass in the same way, and others for the most part. It is clearly of neither of these that chance, or the result of chance, is said to be the cause—neither of that which is by necessity and always, nor of that which is for the most part. But as there is a third class of events besides these two—events which all say are by chance—it is plain that there is such a thing as chance and spontaneity; for we know that things of this kind are due to chance and that things due to chance are of this kind.

15Frag. 53 Diels-Kranz.
Of things that come to be, some come to be for the sake of something, others not. Again, some of the former class are in accordance with intention, others not, but both are in the class of things which are for the sake of something. Hence it is clear that even among the things which are outside what is necessary and what is for the most part, there are some in connexion with which the phrase ‘for the sake of something’ is applicable. (Things that are for the sake of something include whatever may be done as a result of thought or of nature.) Things of this kind, then, when they come to pass accidentally are said to be by chance. For just as a thing is something either in virtue of itself or accidentally, so may it be a cause. For instance, the housebuilding faculty is in virtue of itself a cause of a house, whereas the pale or the musical is an accidental cause. That which is per se cause is determinate, but the accidental cause is indeterminable; for the possible attributes of an individual are innumerable. As we said, then, when a thing of this kind comes to pass among events which are for the sake of something, it is said to be spontaneous or by chance. (The distinction between the two must be made later—for the present it is sufficient if it is plain that both are in the sphere of things done for the sake of something.)

Example: A man is engaged in collecting subscriptions for a feast. He would have gone to such and such a place for the purpose of getting the money, if he had known. He actually went there for another purpose, and it was only accidentally that he got his money by going there; and this was not due to the fact that he went there as a rule or necessarily, nor is the end effected (getting the money) a cause present in himself—it belongs to the class of things that are objects of choice and the result of thought. It is when these conditions are satisfied that the man is said to have gone by chance. If he had chosen and gone for the sake of this—if he always or normally went there when he was collecting payments—he would not be said to have gone by chance.

It is clear then that chance is an accidental cause in the sphere of those actions for the sake of something which involve choice. Thought, then, and chance are in the same sphere, for choice implies thought.

It is necessary, no doubt, that the causes of what comes to pass by chance be indefinite; and that is why chance is supposed to belong to the class of the indefinite and to be inscrutable to man, and why it might be thought that, in a way, nothing occurs by chance. For all these statements are correct, as might be expected. Things do, in a way, occur by chance, for they occur accidentally

16Reading komizomenos, with one MS, for Ross’s komizomenou.
17Omitting tou komisasthai heneka (Bonitz).
and chance is an accidental cause. But it is not the cause without qualification of anything; for instance, a housebuilder is the cause of a house; accidentally, a fluteplayer may be so.

And the causes of the man’s coming and getting the money (when he did not come for the sake of that) are innumerable. He may have wished to see somebody or been following somebody or avoiding somebody, or may have gone to see a spectacle. Thus to say that chance is unaccountable is correct. For an account is of what holds always or for the most part, whereas chance belongs to a third type of event. Hence, since causes of this kind are indefinite, chance too is indefinite. (Yet in some cases one might raise the question whether any chance fact might be the cause of the chance occurrence, e.g. of health the fresh air or the sun’s heat may be the cause, but having had one’s hair cut cannot; for some accidental causes are more relevant to the effect than others.)

Chance is called good when the result is good, evil when it is evil. The terms ‘good fortune’ and ‘ill fortune’ are used when either result is of considerable magnitude. Thus one who comes within an ace of some great evil or great good is said to be fortunate or unfortunate. The mind affirms the presence of the attribute, ignoring the hair’s breadth of difference. Further, it is with reason that good fortune is regarded as unstable; for chance is unstable, as none of the things which result from it can hold always or for the most part.

Both are then, as I have said, accidental causes—both chance and spontaneity—in the sphere of things which are capable of coming to pass not simply, nor for the most part and with reference to such of these as might come to pass for the sake of something.

§ 6 · They differ in that spontaneity is the wider. Every result of chance is from what is spontaneous, but not everything that is from what is spontaneous is from chance.

Chance and what results from chance are appropriate to agents that are capable of good fortune and of action generally. Therefore necessarily chance is in the sphere of actions. This is indicated by the fact that good fortune is thought to be the same, or nearly the same, as happiness, and happiness to be a kind of action, since it is well-doing. Hence what is not capable of action cannot do anything by chance. Thus an inanimate thing or a beast or a child cannot do anything by chance, because it is incapable of choice; nor can good fortune or ill fortune be ascribed to them, except metaphorically, as Protarchus, for example, said that the stones of which altars are made are fortunate because they are held in honour, while their fellows are trodden under foot. Even these things, however, can in a
way be affected by chance, when one who is dealing with them does something to them by chance, but not otherwise.

The spontaneous on the other hand is found both in the beasts and in many inanimate objects. We say, for example, that the horse came spontaneously, because, though his coming saved him, he did not come for the sake of safety. Again, the tripod fell spontaneously, because, though it stood on its feet so as to serve for a seat, it did not fall so as to serve for a seat.

Hence it is clear that events which belong to the general class of things that may come to pass for the sake of something, when they come to pass not for the sake of what actually results, and have an external cause, may be described by the phrase ‘from spontaneity’. These spontaneous events are said to be from chance if they have the further characteristics of being the objects of choice and happening to agents capable of choice. This is indicated by the phrase ‘in vain’, which is used when one thing which is for the sake of another, does not result in it. For instance, taking a walk is for the sake of evacuation of the bowels; if this does not follow after walking, we say that we have walked in vain and that the walking was vain. This implies that what is naturally for the sake of an end is in vain, when it does not effect the end for the sake of which it was the natural means—for it would be absurd for a man to say that had had bathed in vain because the sun was not eclipsed, since the one was not done for the sake of the other. Thus the spontaneous is even according to its derivation the case in which the thing itself happens in vain. The stone that struck the man did not fall for the sake of striking him; therefore it fell spontaneously, because it might have fallen by the action of an agent and for the sake of striking. The difference between spontaneity and what results by chance is greatest in things that come to be by nature; for when anything comes to be contrary to nature, we do not say that it came to be by chance, but by spontaneity. Yet strictly this too is different from the spontaneous proper; for the cause of the latter is external, that of the former internal.

We have now explained what chance is and what spontaneity is, and in what they differ from each other. Both belong to the mode of causation ‘source of change’, for either some natural or some intelligent agent is always the cause; but in this sort of causation the number of possible causes is infinite.

Spontaneity and chance are causes of effects which, though they might result from intelligence or nature, have in fact been caused by something accidentally. Now since nothing which is accidental is prior to what is per se, it is clear that no

18 Reading to heneka allou ekeino ou (Prantl).
19 ‘The spontaneous’: to automatic; ‘the thing itself happens in vain’: auto maten genetai.
accidental cause can be prior to a cause per se. Spontaneity and chance, therefore, are posterior to intelligence and nature. Hence, however true it may be that the heavens are due to spontaneity, it will still be true that intelligence and nature will be prior causes of this universe and of many things in it besides.

§ 7 · It is clear then that there are causes, and that the number of them is what we have stated. The number is the same as that of the things comprehended under the question ‘why’. The ‘why’ is referred ultimately either, in things which do not involve motion, e.g. in mathematics, to the ‘what’ (to the definition of straight line or commensurable or the like); or to what initiated a motion, e.g. ‘why did they go to war?—because there had been a raid’; or we are inquiring ‘for the sake of what?’—‘that they may rule’; or in the case of things that come into being, we are looking for the matter. The causes, therefore, are these and so many in number.

Now, the causes being four, it is the business of the student of nature to know about them all, and if he refers his problems back to all of them, he will assign the ‘why’ in the way proper to his science—the matter, the form, the mover, that for the sake of which. The last three often coincide; for the what and that for the sake of which are one, while the primary source of motion is the same in species as these. For man generates man—and so too, in general, with all things which cause movement by being themselves moved; and such as are not of this kind are no longer inside the province of natural science, for they cause motion not by possessing motion or a source of motion in themselves, but being themselves incapable of motion. Hence there are three branches of study, one of things which are incapable of motion, the second of things in motion, but indestructible, the third of destructible things.

The question ‘why’, then, is answered by reference to the matter, to the form, and to the primary moving cause. For in respect of coming to be it is mostly in this last way that causes are investigated—’what comes to be after what? what was the primary agent or patient?’ and so at each step of the series.

Now the principles which cause motion in a natural way are two, of which one is not natural, as it has no principle of motion in itself. Of this kind is whatever causes movement, not being itself moved, such as that which is completely unchangeable, the primary reality, and the essence of a thing, i.e. the form; for this is the end or that for the sake of which. Hence since nature is for the sake of something, we must know this cause also. We must explain the ‘why’ in all the senses of the term, namely, that from this that will necessarily result (‘from this’ either without qualification or for the most part); that this must be so if that is to be so (as the conclusion presupposes the premisses); that this was the essence of the
thing; and because it is better thus (not without qualification, but with reference to the substance in each case).

§ 8 · We must explain then first why nature belongs to the class of causes which act for the sake of something; and then about the necessary and its place in nature, for all writers ascribe things to this cause, arguing that since the hot and the cold and the like are of such and such a kind, therefore certain things necessarily are and come to be—and if they mention any other cause (one friendship and strife, another mind), it is only to touch on it, and then good-bye to it.

A difficulty presents itself: why should not nature work, not for the sake of something, nor because it is better so, but just as the sky rains, not in order to make the corn grow, but of necessity? (What is drawn up must cool, and what has been cooled must become water and descend, the result of this being that the corn grows.) Similarly if a man’s crop is spoiled on the threshing-floor, the rain did not fall for the sake of this—in order that the crop might be spoiled—but that result just followed. Why then should it not be the same with the parts in nature, e.g. that our teeth should come up of necessity—the front teeth sharp, fitted for tearing, the molars broad and useful for grinding down the food—since they did not arise for this end, but it was merely a coincident result; and so with all other parts in which we suppose that there is purpose? Wherever then all the parts came about just what they would have been if they had come to be for an end, such things survived, being organized spontaneously in a fitting way; whereas those which grew otherwise perished and continue to perish, as Empedocles says his ‘man-faced oxprogeny’ did.²⁰

Such are the arguments (and others of the kind) which may cause difficulty on this point. Yet it is impossible that this should be the true view. For teeth and all other natural things either invariably or for the most part come about in a given way; but of not one of the results of chance or spontaneity is this true. We do not ascribe to chance or mere coincidence the frequency of rain in winter, but frequent rain in summer we do; nor heat in summer but only if we have it in winter. If then, it is agreed that things are either the result of coincidence or for the sake of something, and these cannot be the result of coincidence or spontaneity, it follows that they must be for the sake of something; and that such things are all due to nature even the champions of the theory which is before us would agree. Therefore action for an end is present in things which come to be and are by nature.

Further, where there is an end, all the preceding steps are for the sake of that. ²⁰Frag. 61 Diels-Kranz.
Now surely as in action, so in nature; and as in nature, so it is in each action, if nothing interferes. Now action is for the sake of an end; therefore the nature of things also is so. Thus if a house, e.g., had been a thing made by nature, it would have been made in the same way as it is now by art; and if things made by nature were made not only by nature but also by art, they would come to be in the same way as by nature. The one, then, is for the sake of the other; and generally art in some cases completes what nature cannot bring to a finish, and in others imitates nature. If, therefore, artificial products are for the sake of an end, so clearly also are natural products. The relation of the later to the earlier items is the same in both.

This is most obvious in the animals other than man: they make things neither by art nor after inquiry or deliberation. That is why people wonder whether it is by intelligence or by some other faculty that these creatures work,—spiders, ants, and the like. By gradual advance in this direction we come to see clearly that in plants too that is produced which is conducive to the end—leaves, e.g. grow to provide shade for the fruit. If then it is both by nature and for an end that the swallow makes its nest and the spider its web, and plants grow leaves for the sake of the fruit and send their roots down (not up) for the sake of nourishment, it is plain that this kind of cause is operative in things which come to be and are by nature. And since nature is twofold, the matter and the form, of which the latter is the end, and since all the rest is for the sake of the end, the form must be the cause in the sense of that for the sake of which.

Now mistakes occur even in the operations of art: the literate man makes a mistake in writing and the doctor pours out the wrong dose. Hence clearly mistakes are possible in the operations of nature also. If then in art there are cases in which what is rightly produced serves a purpose, and if where mistakes occur there was a purpose in what was attempted, only it was not attained, so must it be also in natural products, and monstrosities will be failures in the purposive effort. Thus in the original combinations the ‘ox-progeny’, if they failed to reach a determinate end must have arisen through the corruption of some principle, as happens now when the seed is defective.

Further, seed must have come into being first, and not straightway the animals: what was ‘undifferentiated first’\(^\text{21}\) was seed.

Again, in plants too we find that for the sake of which, though the degree of organization is less. Were there then in plants also olive-headed vine-progeny, like the ‘man-headed ox-progeny’, or not? An absurd suggestion; yet there must have

\(^{21}\)Empedocles, frag. 62 Diels-Kranz.
been, if there were such things among animals.

Moreover, among the seeds anything must come to be at random. But the person who asserts this entirely does away with nature and what exists by nature. For those things are natural which, by a continuous movement originated from an internal principle, arrive at some end: the same end is not reached from every principle; nor any chance end, but always the tendency in each is towards the same end, if there is no impediment.

The end and the means towards it may come about by chance. We say, for instance, that a stranger has come by chance, paid the ransom, and gone away, when he does so as if he had come for that purpose, though it was not for that that he came. This is accidental, for chance is an accidental cause, as I remarked before. But when an event takes place always or for the most part, it is not accidental or by chance. In natural products the sequence is invariable, if there is no impediment.

It is absurd to suppose that purpose is not present because we do not observe the agent deliberating. Art does not deliberate. If the ship-building art were in the wood, it would produce the same results by nature. If, therefore, purpose is present in art, it is present also in nature. The best illustration is a doctor doctoring himself: nature is like that.

It is plain then that nature is a cause, a cause that operates for a purpose.

§ 9 · As regards what is of necessity, we must ask whether the necessity is hypothetical, or simple as well. The current view places what is of necessity in the process of production, just as if one were to suppose that the wall of a house necessarily comes to be because what is heavy is naturally carried downwards and what is light to the top, so that the stones and foundations take the lowest place, with earth above because it is lighter, and wood at the top of all as being the lightest. Whereas, though the wall does not come to be without these, it is not due to these, except as its material cause: it comes to be for the sake of sheltering and guarding certain things. Similarly in all other things which involve that for the sake of which: the product cannot come to be without things which have a necessary nature, but it is not due to these (except as its material); it comes to be for an end. For instance, why is a saw such as it is? To effect so-and-so and for the sake of so-and-so. This end, however, cannot be realized unless the saw is made of iron. It is, therefore, necessary for it to be of iron, if we are to have a saw and perform the operation of sawing. What is necessary then, is necessary on a hypothesis, not as an end. Necessity is in the matter, while that for the sake of which is in the definition.

Necessity in mathematics is in a way similar to necessity in things which come
to be through the operation of nature. Since a straight line is what it is, it is necessary that the angles of a triangle should equal two right angles. But not conversely; though if the angles are not equal to two right angles, then the straight line is not what it is either. But in things which come to be for an end, the reverse is true. If the end is to exist or does exist, that also which precedes it will exist or does exist; otherwise just as there, if the conclusion is not true, the principle will not be true, so here the end or that for the sake of which will not exist. For this too is itself a principle, but of the reasoning, not of the action. (In mathematics the principle is the principle of the reasoning only, as there is no action.) If then there is to be a house, such-and-such things must be made or be there already or exist, or generally the matter relative to the end, bricks and stones if it is a house. But the end is not due to these except as the matter, nor will it come to exist because of them. Yet if they do not exist at all, neither will the house, or the saw—the former in the absence of stones, the latter in the absence of iron—just as in the other case the principles will not be true, if the angles of the triangle are not equal to two right angles.

The necessary in nature, then, is plainly what we call by the name of matter, and the changes in it. Both causes must be stated by the student of nature, but especially the end; for that is the cause of the matter, not vice versa; and the end is that for the sake of which, and the principle starts from the definition or essence: as in artificial products, since a house is of such-and-such a kind, certain things must necessarily come to be or be there already, or since health is this, these things must necessarily come to be or be there already, so too if man is this, then these; if these, then those. Perhaps the necessary is present also in the definition. For if one defines the operation of sawing as being a certain kind of dividing, then this cannot come about unless the saw has teeth of a certain kind; and these cannot be unless it is of iron. For in the definition too there are some parts that stand as matter.
§ 1 · Nature is a principle of motion and change, and it is the subject of our inquiry. We must therefore see that we understand what motion is; for if it were unknown, nature too would be unknown.

When we have determined the nature of motion, our task will be to attack in the same way the terms which come next in order. Now motion is supposed to belong to the class of things which are continuous; and the infinite presents itself first in the continuous—that is how it comes about that the account of the infinite is often used in definitions of the continuous; for what is infinitely divisible is continuous. Besides these, place, void, and time are thought to be necessary conditions of motion.

Clearly, then, for these reasons and also because the attributes mentioned are common to everything and universal, we must first take each of them in hand and discuss it. For the investigation of special attributes comes after that of the common attributes.

To begin then, as we said, with motion.

Some things are in fulfilment only, others in potentiality and in fulfilment—one being a ‘this’, another so much, another such and such, and similarly for the other categories of being. The term ‘relative’ is applied sometimes with reference to excess and defect, sometimes to agent and patient, and generally to what can move and what can be moved. For what can cause movement is relative to what can be moved, and vice versa.

There is no such thing as motion over and above the things. It is always with respect to substance or to quantity or to quality or to place that what changes changes. But it is impossible, as we assert, to find anything common to these which is neither ‘this’ nor quantity nor quality nor any of the other predicates. Hence neither will motion and change have reference to something over and above the things mentioned; for there is nothing over and above them.

Now each of these belongs to all its subjects in either of two ways: namely, substance—the one is its form, the other privation; in quality, white and black; in quantity, complete and incomplete. Similarly, in respect of locomotion, upwards and downwards or light and heavy. Hence there are as many types of motion or change as there are of being.
We have distinguished in respect of each class between what is in fulfilment and what is potentially; thus the fulfilment of what is potentially, as such, is motion—e.g. the fulfilment of what is alterable, as alterable, is alteration; of what is increasable and its opposite, decreasable (there is no common name for both), increase and decrease; of what can come to be and pass away, coming to be and passing away; of what can be carried along, locomotion.

That this is what motion is, is clear from what follows: when what is buildable, in so far as we call it such, is in fulfilment, it is being built, and that is building. Similarly with learning, doctoring, rolling, jumping, ripening, aging.

The same thing can be both potential and fulfilled, not indeed at the same time or not in the same respect, but e.g. potentially hot and actually cold. Hence such things will act and be acted on by one another in many ways: each of them will be capable at the same time of acting and of being acted upon. Hence, too, what effects motion as a natural agent can be moved: when a thing of this kind causes motion, it is itself also moved. This, indeed, has led some people to suppose that every mover is moved. But this question depends on another set of arguments, and the truth will be made clear later. It is possible for a thing to cause motion, though it is itself incapable of being moved.

It is the fulfilment of what is potential when it is already fulfilled and operates not as itself but as movable, that is motion. What I mean by ‘as’ is this: bronze is potentially a statue. But it is not the fulfilment of bronze as bronze which is motion. For to be bronze and to be a certain potentiality are not the same. If they were identical without qualification, i.e. in definition, the fulfilment of bronze as bronze would be motion. But they are not the same, as has been said. (This is obvious in contraries. To be capable of health and to be capable of illness are not the same; for if they were there would be no difference between being ill and being well. Yet the subject both of health and of sickness—whether it is humour or blood—is one and the same.)

We can distinguish, then, between the two—just as colour and visible are different—and clearly it is the fulfilment of what is potential as potential that is motion.

It is evident that this is motion, and that motion occurs just when the fulfilment itself occurs, and neither before nor after. For each thing is capable of being at one time actual, at another not. Take for instance the buildable: the actuality of the buildable as buildable is the process of building. For the actuality must be either this or the house. But when there is a house, the buildable is no longer there.

22 See VIII 1-6.
On the other hand, it is the buildable which is being built. Necessarily, then, the actuality is the process of building. But building is a kind of motion, and the same account will apply to the other kinds also.

§ 2 · The soundness of this definition is evident both when we consider the accounts of motion that the others have given, and also from the difficulty of defining it otherwise.

One could not easily put motion and change in another genus—this is plain if we consider where some people put it: they identify motion with difference or inequality or not being; but such things are not necessarily moved, whether they are different or unequal or non-existent. Nor is change either to or from these rather than to or from their opposites.

The reason why they put motion into these genera is that it is thought to be something indefinite, and the principles in the second column are indefinite because they are privative: none of them is either a ‘this’ or such or comes under any of the other categories. The reason why motion is thought to be indefinite is that is cannot be classed as a potentiality or as an actuality—a thing that is merely capable of having a certain size is not necessarily undergoing change, nor yet a thing that is actually of a certain size, and motion is thought to be a sort of actuality, but incomplete, the reason for this view being that the potential whose actuality it is is incomplete. This is why it is hard to grasp what motion is. It is necessary to class it with privation or with potentiality or with simple actuality, yet none of these seems possible. There remains then the suggested mode of definition, namely that it is a sort of actuality, or actuality of the kind described, hard to grasp, but not incapable of existing.

Every mover too is moved, as has been said—every mover, that is, which is capable of motion, and whose immobility is rest (for when a thing is subject to motion its immobility is rest). For to act on the movable as such is just to move it. But this it does by contact, so that at the same time it is also acted on. Hence motion is the fulfilment of the movable as movable, the cause being contact with what can move, so that the mover is also acted on. The mover will always transmit a form, either a ‘this’ or such or so much, which, when it moves, will be the principle and cause of the motion, e.g. the actual man begets man from what is potentially man.

§ 3 · The solution of the difficulty is plain: motion is in the movable. It is the fulfilment of this potentiality by the action of that which has the power of causing

23 Compare the Pythagorean columns at *Metaphysics A 5 986a25.*
motion; and the actuality of that which has the power of causing motion is not
other than the actuality of the movable; for it must be the fulfilment of both. A
thing is capable of causing motion because it can do this, it is a mover because it
actually does it. But it is on the movable that it is capable of acting. Hence there
is a single actuality of both alike, just as one to two and two to one are the same
interval, and the steep ascent and the steep descent are one—for these are one and
the same, although their definitions are not one. So it is with the mover and the
moved.

This view has a dialectical difficulty. Perhaps it is necessary that there should
be an actuality of the agent and of the patient. The one is agency and the other
patiency; and the outcome and end of the one is an action, that of the other a
passion. Since then they are both motions, we may ask: in what are they, if they
are different? Either both are in what is acted on and moved, or the agency is
in the agent and the patiency in the patient. (If we ought to call the latter also
‘agency’, the word would be used in two senses.)

Now, in the latter case, the motion will be in the mover, for the same account
will hold of mover and moved. Hence either every mover will be moved, or,
though having motion, it will not be moved.

If on the other hand both are in what is moved and acted on—both the agency
and the patiency (e.g. both teaching and learning, though they are two, in the
learner), then, first, the actuality of each will not be present in each, and, a second
absurdity, a thing will have two motions at the same time. How will there be two
alterations of quality in one subject towards one form? The thing is impossible:
the actualization will be one.

But (someone will say) it is contrary to reason to suppose that there should be
one identical actualization of two things which are different in kind. Yet there will
be, if teaching and learning are the same, and agency and patiency. To teach will
be the same as to learn, and to act the same as to be acted on—the teacher will
necessarily be learning everything that he teaches, and the agent will be acted on.

It is not absurd that the actualization of one thing should be in another. Teach-
ing is the activity of a person who can teach, yet the operation is performed in
something—it is not cut adrift from a subject, but is of one thing in another.

There is nothing to prevent two things having one and the same actualization
(not the same in being, but related as the potential is to the actual).

Nor is it necessary that the teacher should learn, even if to act and to be acted
on are one and the same, provided they are not the same in respect of the account
which states their essence (as raiment and dress), but are the same in the sense in
which the road from Thebes to Athens and the road from Athens to Thebes are
the same, as has been explained above. For it is not things which are in any way the same that have all their attributes the same, but only those to be which is the same. But indeed it by no means follows from the fact that teaching is the same as learning, that to learn is the same as to teach, any more than it follows from the fact that there is one distance between two things which are at a distance from each other, that being here at a distance from there and being there at a distance from here are one and the same. To generalize, teaching is not the same as learning, or agency as patiency, in the full sense, though they belong to the same subject, the motion; for the actualization of this in that and the actualization of that through the action of this differ in definition.

What then motion is, has been stated both generally and particularly. It is not difficult to see how each of its types will be defined—alteration is the fulfilment of the alterable as alterable (or, more scientifically, the fulfilment of what can act and what can be acted on, as such)—generally and again in each particular case, building, healing. A similar definition will apply to each of the other kinds of motion.

§ 4 · The science of nature is concerned with magnitudes and motion and time, and each of these is necessarily infinite or finite, even if some things are not, e.g. a quality or a point—it is not necessary perhaps that such things should be put under either head. Hence it is incumbent on the person who treats of nature to discuss the infinite and to inquire whether there is such a thing or not, and, if there is, what it is.

The appropriateness to the science of this problem is clearly indicated; for all who have touched on this kind of science in a way worth considering have formulated views about the infinite, and indeed, to a man, make it a principle of things.

Some, as the Pythagoreans and Plato, make the infinite a principle as a substance in its own right, and not as an accident of some other thing. Only the Pythagoreans place the infinite among the objects of sense (they do not regard number as separable from these), and assert that what is outside the heaven is infinite. Plato, on the other hand, holds that there is no body outside (the Forms are not outside, because they are nowhere), yet that the infinite is present not only in the objects of sense but in the Forms also.

Further, the Pythagoreans identify the infinite with the even. For this, they say, when it is cut off and shut in by the odd, provides things with the element of infinity. An indication of this is what happens with numbers. If the gnomons are placed round the one, and without the one, in the one construction the figure that
results is always different, in the other it is always the same. But Plato has two
infinites, the Great and the Small.

The physicists, on the other hand, all of them, regard the infinite as an attribute
of a substance which is different from it and belongs to the class of the so-called
elements—water or air or what is intermediate between them. Those who make
them limited in number never make them infinite in amount. But those who make
the elements infinite in number, as Anaxagoras and Democritus do, say that the in-
finite is continuous by contact—compounded of the homogeneous parts according
to the one, of the seedmass of the atomic shapes according to the other.

Further, Anaxagoras held that any part is a mixture in the same way as the
whole, on the ground of the observed fact that anything comes out of anything. For
it is probably for this reason that he maintains that once upon a time all things were
together. This flesh and this bone were together, and so of any thing; therefore all
things—and at the same time too. For there is a principle of separation, not only
for each thing, but for all. Each thing that comes to be comes to be from a similar
body, and there is a coming to be of all things, though not, it is true, at the same
time. Hence there must also be a principle of coming to be. One such source there
is which he calls Mind, and Mind begins its work of thinking from some principle.
So necessarily all things must have been together at a certain time, and must have
begun to be moved at a certain time.

Democritus, for his part, asserts that no element arises from another element.
Nevertheless for him the common body is a principle of all things, differing from
part to part in size and in shape.

It is clear then from these considerations that the inquiry concerns the student
of nature. Nor is it without reason that they all make it a principle. We cannot say
that the infinite exists in vain, and the only power which we can ascribe to it is that
of a principle. For everything is either a principle or derived from a principle. But
there cannot be a principle of the infinite, for that would be a limit of it. Further,
as it is a principle, it is both uncreatable and indestructible. For there must be a
point at which what has come to be reaches its end, and also a termination of all
passing away. That is why, as we say, there is no principle of this, but it is this
which is held to be the principle of other things, and to encompass all and to steer
all, as those assert who do not recognize, alongside the infinite, other causes, such
as Mind or Friendship. Further they identify it with the Divine, for it is deathless
and imperishable as Anaximander says, with the majority of the physicists.

Belief in the existence of the infinite comes mainly from five considerations:
From the nature of time—for it is infinite; From the division of magnitudes—for
the mathematicians also use the infinite; again, if coming to be and passing away
do not give out, it is only because that from which things come to be is infinite; again, because the limited always finds its limit in something, so that there must be no limit, if everything is always limited by something different from itself. Most of all, a reason which is peculiarly appropriate and presents the difficulty that is felt by everybody—not only number but also mathematical magnitudes and what is outside the heaven are supposed to be infinite because they never give out in our thought.

If what is outside is infinite it seems that body also is infinite, and that there is an infinite number of worlds. Why should there be body in one part of the void rather than in another? Grant only that mass is anywhere and it follows that it must be everywhere. Also, if void and place are infinite, there must be infinite body too; for in the case of eternal things what may be is.

But the problem of the infinite is difficult: many contradictions result whether we suppose it to exist or not to exist. If it exists, we have still to ask how it exists—as a substance or as the essential attribute of some entity? Or in neither way, yet none the less is there something which is infinite or some things which are infinitely many?

The problem, however, which specially belongs to the physicist is to investigate whether there is a sensible magnitude which is infinite.

We must begin by distinguishing the various ways in which the term ‘infinite’ is used: in one way, it is applied to what is incapable of being gone through, because it is not its nature to be gone through (the way in which the voice is invisible); in another, to what admits of a traversal which cannot be completed, or which can only be completed with difficulty, or what naturally admits of a traversal but does not have a traversal or limit.

Further, everything that is infinite may be so in respect of addition or division or both.

§ 5 · Now it is impossible that the infinite should be a thing which is in itself infinite, separable from sensible objects. If the infinite is neither a magnitude nor an aggregate, but is itself a substance and not an accident, it will be indivisible; for the divisible must be either a magnitude or an aggregate. But if indivisible, then not infinite, except in the way in which the voice is invisible. But this is not the way in which it is used by those who say that the infinite exists, nor that in which we are investigating it, namely as that which cannot be gone through. But if the infinite is accidental, it would not be, qua infinite, an element in things, any more than the invisible would be an element of speech, though the voice is invisible.

Further, how can the infinite be itself something, unless both number and mag-
nitude, of which it is an essential attribute, exist in that way? If they are not substances, *a fortiori* the infinite is not.

It is plain, too, that the infinite cannot be an actual thing and a substance and principle. For any part of it that is taken will be infinite, if it has parts; for to be infinite and the infinite are the same, if it is a substance and not predicated of a subject. Hence it will be either indivisible or divisible into infinites. But the same thing cannot be many infinites. (Yet just as part of air is air, so a part of the infinite would be infinite, if it is supposed to be a substance and principle.) Therefore the infinite must be without parts and indivisible. But this cannot be true of what is infinite in fulfilment; for it must be a definite quantity.

Suppose then that infinity belongs accidentally. But, if so, it cannot, as we have said, be described as a principle, but rather that of which it is an accident—the air or the even number.

Thus the view of those who speak after the manner of the Pythagoreans is absurd. With the same breath they treat the infinite as substance, and divide it into parts.

This discussion, however, involves the more general question whether the infinite can be present in mathematical objects and things which are intelligible and do not have extension. Our inquiry is limited to our special subject-matter, the objects of sense, and we have to ask whether there is or is not among them a body which is infinite in the direction of increase.

We may begin with a dialectical argument and show as follows that there is no such thing.

If ‘bounded by a surface’ is the definition of body there cannot be an infinite body either intelligible or sensible. Nor can number taken in abstraction be infinite; for number or that which has number is numerable. If then the numerable can be numbered, it would also be possible to go through the infinite.

If, on the other hand, we investigate the question more in accordance with principles appropriate to physics, we are led as follows to the same result.

The infinite can be either compound, or simple.

It will not be compound, if the elements are finite in number. For they must be more than one, and the contraries must always balance, and no *one* of them can be infinite. If one of the bodies falls in any degree short of the other in potency—suppose fire is finite in amount while air is infinite and a given quantity of fire exceeds in power the same amount of air in any ratio provided it is numerically definite—the infinite body will obviously prevail over and annihilate the finite body. On the other hand, it is impossible that each should be infinite. Body is what has extension in all directions and the infinite is what is boundlessly extended, so
that the infinite body would be extended in all directions \textit{ad infinitum}.

Nor can an infinite body be one and simple, whether it is, as some hold, a
thing over and above the elements (from which they generate the elements) or is
not thus qualified. There \textit{are} some people who make this the infinite, and not air
or water, in order that the other elements may not be annihilated by the element
which is infinite. They have contrariety with each other—air is cold, water moist,
fire hot; if one were infinite, the others by now would have ceased to be. As it is,
they say, the infinite is different from them and is their source.

It is impossible, however, that there should be such a body; not because it is
infinite—on that point a general proof can be given which applies equally to all,
air, water, or anything else—but because there is no such sensible body, alongside
the so-called elements. Everything can be resolved into the elements of which it is
composed. Hence the body in question would have been present in our world here,
alongside air and fire and earth and water; but nothing of the kind is observed.

Nor can fire or any other of the elements be infinite. For generally, and apart
from the question how any of them could be infinite, the universe, even, if it were
limited, cannot either be or become one of them, as Heraclitus says that at some
time all things become fire. (The same argument applies also to the one which the
physicists suppose to exist alongside the elements: for everything changes from
contrary to contrary, e.g. from hot to cold.)

In each case, we should consider along these lines whether it is or is not possi-
ble that it should be infinite. The following arguments give a general demonstra-
tion that it is not possible for there to be an infinite sensible body.

It is the nature of every kind of sensible body to be somewhere, and there is
a place appropriate to each, the same for the part and for the whole, e.g. for the
whole earth and for a single clod, and for fire and for a spark.

Suppose that the infinite sensible body is homogeneous. Then each will be
either immovable or always being carried along. Yet neither is possible. For why
downwards rather than upwards or in any other direction? I mean, e.g., if you take
a clod, where will it be moved or where will it be at rest? For the place of the
body akin to it is infinite. Will it occupy the whole place, then? And how? What
then will be the nature of its rest and of its movement, or where will they be? It
will either be at rest everywhere—then it will not be moved; or it will be moved
everywhere—then it will not come to rest.

But if the universe has dissimilar parts, the proper places of the parts will be
dissimilar also, and the body of the universe will have no unity except that of
contact. Then, further, the parts will be either finite or infinite in variety of kind.

\textit{Finite} they cannot be; for if the universe is to be infinite, some of them would
have to be infinite, while the others were not, e.g. fire or water will be infinite. But such an element would destroy what is contrary to it.

But if the parts are infinite in number and simple, their proper places too will be infinite in number, and the same will be true of the elements themselves. If that is impossible, and the places are finite, the whole too must be finite; for the place and the body cannot but fit each other. Neither is the whole place larger than what can be filled by the body (and then the body would no longer be infinite), nor is the body larger than the place; for either there would be an empty space or a body whose nature it is to be nowhere. This indeed is the reason why none of the physicists made fire or earth the one infinite body, but either water or air or what is intermediate between them, because the abode of each of the two was plainly determinate, while the others have an ambiguous place between up and down.

Anaxagoras gives an absurd account of why the infinite is at rest. He says that the infinite itself is the cause of its being fixed. This because it is in itself, since nothing else contains it—on the assumption that wherever anything is, it is there by its own nature. But this is not true: a thing could be somewhere by compulsion, and not where it is its nature to be.

Thus however true it may be that the whole is not moved (for what is fixed by itself and is in itself must be immovable), yet we must explain why it is not its nature to be moved. It is not enough just to make this statement and then decamp. For it might be not moving because there is nowhere else for it to move, even though there is no reason why it should not be its nature to be moved. The earth is not carried along, and would not be carried along if it were infinite, provided it is held together by the centre. But it would not be because there was no other region in which it could be carried along that it would remain, but because this is its nature. Yet in this case also we may say that it fixes itself. If then in the case of the earth, supposed to be infinite, it is at rest, not for this reason, but because it has weight and what is heavy rests at the centre and the earth is at the centre, similarly the infinite also would rest in itself, not because it is infinite and fixes itself, but owing to some other cause.

It is clear at the same time that part of the infinite body ought to remain at rest. Just as the infinite remains at rest in itself because it fixes itself, so too any part of it you may take will remain in itself. The appropriate places of the whole and of the part are alike, e.g. of the whole earth and of a clod the appropriate place is the lower region; of fire as a whole and of a spark, the upper region. If, therefore, to be in itself is the place of the infinite, that also will be appropriate to the part. Therefore it will remain in itself.

In general, the view that there is an infinite body is plainly incompatible with
the doctrine that there is a proper place for each kind of body, if every sensible body has either weight or lightness, and if a body has a natural locomotion towards the centre if it is heavy, and upwards if it is light. This would need to be true of the infinite also. But neither character can belong to it: it cannot be either as a whole, nor can it be half the one and half the other. For how should you divide it? or how can the infinite have the one part up and the other down, or an extremity and a centre?

Further, every sensible body is in place, and the kinds or differences of place are up-down, before-behind, right-left; and these distinctions hold not only in relation to us and by convention, but also in the whole itself. But in the infinite body they cannot exist. In general, if it is impossible that there should be an infinite place, and if every body is in place, there cannot be an infinite body.

Surely what is in a place is somewhere, and what is somewhere is in a place. Just, then, as the infinite cannot be quantity—that would imply that it has a particular quantity, e.g. two or three cubits; quantity just means these—so a thing’s being in a place means that it is somewhere, and that is either up or down or in some other of the six differences of position; but each of these is a limit.

It is plain from these arguments that there is no body which is actually infinite.

§ 6 · But on the other hand to suppose that the infinite does not exist in any way leads obviously to many impossible consequences: there will be a beginning and an end of time, a magnitude will not be divisible into magnitudes, number will not be infinite. If, then, in view of the above considerations, neither alternative seems possible, an arbiter must be called in; and clearly there is a sense in which the infinite exists and another in which it does not.

Now things are said to exist both potentially and in fulfilment. Further, a thing is infinite either by addition or by division. Now, as we have seen, magnitude is not actually infinite. But by division it is infinite. (There is no difficulty in refuting the theory of indivisible lines.) The alternative then remains that the infinite has a potential existence.

But we must not construe potential existence in the way we do when we say that it is possible for this to be a statue—this will be a statue, but something infinite will not be in actuality. Being is spoken of in many ways, and we say that the infinite is in the sense in which we say it is day or it is the games, because one thing after another is always coming into existence. For of these things too the distinction between potential and actual existence holds. We say that there are Olympic games, both in the sense that they may occur and that they are actually occurring.
The infinite exhibits itself in different ways—in time, in the generations of man, and in the division of magnitudes. For generally the infinite has this mode of existence: one thing is always being taken after another, and each thing that is taken is always finite, but always different. [Again, ‘being’ is spoken of in several ways, so that we must not regard the infinite as a ‘this’, such as a man or a horse, but must suppose it to exist in the sense in which we speak of the day or the games as existing—things whose being has not come to them like that of a substance, but consists in a process of coming to be or passing away, finite, yet always different.]

But in spatial magnitudes, what is taken persists, while in the succession of time and of men it takes place by the passing away of these in such a way that the source of supply never gives out.

In a way the infinite by addition is the same thing as the infinite by division. In a finite magnitude, the infinite by addition comes about in a way inverse to that of the other. For just as we see division going on \textit{ad infintitum}, so we see addition being made in the same proportion to what is already marked off. For if we take a determinate part of a finite magnitude and add another part determined by the same ratio (not taking in the same amount of the original whole), we shall not traverse the given magnitude. But if we increase the ratio of the part, so as always to take in the same amount, we shall traverse the magnitude; for every finite magnitude is exhausted by means of any determinate quantity however small.

The infinite, then, exists in no other way, but in this way it does exist, potentially and by reduction. It exists in fulfillment in the sense in which we say ‘it is day’ or ‘it is the games’; and potentially as matter exists, not independently as what is finite does.

By addition then, also, there is potentially an infinite, namely, what we have described as being in a sense the same as the infinite in respect of division. For it will always be possible to take something \textit{ab extra}. Yet the sum of the parts taken will not exceed every determinate magnitude, just as in the direction of division every determinate magnitude is surpassed and there will always be a smaller part.

But in respect of addition there cannot even potentially be an infinite which exceeds every assignable magnitude, unless it is accidentally infinite in fulfillment, as the physicists hold to be true of the body which is outside the world, whose substance is air or something of the kind. But if there cannot be in this way a sensible body which is infinite in fulfillment, evidently there can no more be a body which is potentially infinite in respect of addition, except as the inverse of the infinite by

\footnote{Ross excises the bracketed sentence as an alternative version of 206a18-29.}
division, as we have said. It is for this reason that Plato also made the infinites two in number, because it is supposed to be possible to exceed all limits and to proceed *ad infinitum* in the direction both of increase and of reduction. Yet though he makes the infinites two, he does not use them. For in the numbers the infinite in the direction of reduction is not present, as the monad is the smallest; nor is the infinite in the direction of increase, for he makes numbers only up to the decad.

The infinite turns out to be the contrary of what it is said to be. It is not what has nothing outside it that is infinite, but what always has something outside it. This is indicated by the fact that rings also that have no bezel are described as infinite, because it is always possible to take a part which is outside a given part. The description depends on a certain similarity, but it is not true in the full sense of the word. This condition alone is not sufficient: it is necessary also that the same part should never be taken twice. In the circle, the latter condition is not satisfied: it is true only that the next part is always different.

Thus something is infinite if, taking it quantity by quantity, we can always take something outside. On the other hand, what has nothing outside it is complete and whole. For thus we define the whole—that from which nothing is wanting, as a whole man or box. What is true of each particular is true of the whole properly speaking—the whole is that of which nothing is outside. On the other hand that from which something is absent and outside, however small that may be, is not ‘all’. Whole and complete are either quite identical or closely akin. Nothing is complete which has no end and the end is a limit.

Hence Parmenides must be thought to have spoken better than Melissus. The latter says that the whole is infinite, but the former describes it as limited, ‘equally balanced from the middle’. For to connect the infinite with the universe and the whole is not like joining two pieces of string; for it is from this they get the dignity they ascribe to the infinite—its containing all things and holding the universe in itself—from its having a certain similarity to the whole. It is in fact the matter of the completeness which belongs to size, and what is potentially a whole, though not in fulfilment. It is divisible both in the direction of reduction and of the inverse addition. It is a whole and limited; not, however, in virtue of its own nature, but in virtue of something else. It does not contain, but, in so far as it is infinite, is contained. Consequently, also, it is unknowable, *qua* infinite; for the matter has no form. (Hence it is plain that the infinite stands in the relation of part rather than of whole. For the matter is part of the whole, as the bronze is of the bronze

25Rings are *apeiroi* in the sense of having no ends (*perata*).
26Frag. 8, line 44, Diels-Kranz.
statue.) If it contains in the case of sensible things, in the case of intelligible things the great and the small ought to contain them. But it is absurd and impossible to suppose that the unknowable and indeterminate should contain and determine.

§ 7 · It is reasonable that there should not be held to be an infinite in respect of addition such as to surpass every magnitude, but that there should be thought to be such an infinite in the direction of division. For the matter and the infinite are contained inside what contains them, while it is the form which contains. It is reasonable too to suppose that in number there is a limit in the direction of the minimum, and that in the other direction every amount is always surpassed. In magnitude, on the contrary, every magnitude is surpassed in the direction of smallness, while in the other direction there is no infinite magnitude. The reason is that what is one is indivisible whatever it may be, e.g. a man is one man, not many. Number on the other hand is a plurality of ‘ones’ and a certain quantity of them. Hence number must stop at the indivisible; for ‘two’ and ‘three’ are derivative terms, and so with each of the other numbers. But in the direction of largeness it is always possible to think of a large number; for the number of times a magnitude can be bisected is infinite. Hence this infinite is potential, never actual: the number of parts that can be taken always surpasses any definite amount. But this number is not separable, and its infinity does not persist but consists in a process of coming to be, like time and the number of time.

With magnitudes the contrary holds. What is continuous is divided ad infinitum, but there is no infinite in the direction of increase. For the size which it can potentially be, it can actually be. Hence since no sensible magnitude is infinite, it is impossible to exceed every definite magnitude, for if it were possible there would be something bigger than the heavens.

The infinite is not the same in magnitude and movement and time, in the sense of a single nature, but the posterior depends on the prior, e.g. movement is called infinite in virtue of the magnitude covered by the movement (or alteration or growth), and time because of the movement. (I use these terms for the moment. Later I shall explain what each of them means, and also why every magnitude is divisible into magnitudes.)

Our account does not rob the mathematicians of their science, by disproving the actual existence of the infinite in the direction of increase, in the sense of the untraversable. In point of fact they do not need the infinite and do not use it. They postulate only that a finite straight line may be produced as far as they wish. It is possible to have divided into the same ratio as the largest quantity another magnitude of any size you like. Hence, for the purposes of proof, it will make no
difference to them whether the infinite is found among existent magnitudes.

In the four-fold scheme of causes, it is plain that the infinite is a cause in the sense of matter, and that its essence is privation, the subject as such being what is continuous and sensible. All the other thinkers, too, evidently treat the infinite as matter—that is why it is inconsistent in them to make it what contains, and not what is contained.

§ 8 · It remains to go through the arguments which are supposed to support the view that the infinite exists not only potentially but as a separate thing. Some have no cogency; others can be met by fresh objections that are true.

In order that coming to be should not fail, it is not necessary that there should be a sensible body which is actually infinite. The passing away of one thing may be the coming to be of another, the universe being limited.

There is a difference between touching and being limited. The former is relative to something and is the touching of something (for everything that touches touches something), and further is an attribute of some one of the things which are limited. On the other hand, what is limited is not limited in relation to anything. Again, contact is not possible between any two things taken at random.

To rely on thinking is absurd; for then the excess or defect is not in the thing but in the thought. One might think that one of us is bigger than he is and magnify him ad infinitum. But it does not follow that he is bigger than the size we are, just because some one thinks he is, but only because he is the size he is. The thought is an accident.

Time indeed and movement are infinite, and also thinking; but the parts that are taken do not persist.

Magnitude is not infinite either in the way of reduction or of magnification in thought.

This concludes my account of the way in which the infinite exists, and of the way in which it does not exist, and of what it is.
§ 1 · The physicist must have a knowledge of place, too, as well as of the infinite—
namely, whether there is such a thing or not, and the manner of its existence
and what it is—both because all suppose that things which exist are somewhere
(the non-existent is nowhere—where is the goat-stag or the sphinx?), and because
motion in its most general and proper sense is change of place, which we call
‘locomotion’.

The question, what is place? presents many difficulties. An examination of
all the relevant facts seems to lead to different conclusions. Moreover, we have
inherited nothing from previous thinkers, whether in the way of a statement of
difficulties or of a solution.

The existence of place is held to be obvious from the fact of mutual replace-
ment. Where water now is, there in turn, when the water has gone out as from a
vessel, air is present; and at another time another body occupies this same place.
The place is thought to be different from all the bodies which come to be in it
and replace one another. What now contains air formerly contained water, so that
clearly the place or space into which and out of which they passed was something
different from both.

Further, the locomotions of the elementary natural bodies—namely, fire, earth,
and the like—show not only that place is something, but also that it exerts a certain
influence. Each is carried to its own place, if it is not hindered, the one up, the
other down. Now these are regions or kinds of place—up and down and the rest
of the six directions. Nor do such distinctions (up and down and right and left)
hold only in relation to us. To us they are not always the same but change with the
direction in which we are turned: that is why the same thing is often both right and
left, up and down, before and behind. But in nature each is distinct, taken apart
by itself. It is not every chance direction which is up, but where fire and what is
light are carried; similarly, too, down is not any chance direction but where what
has weight and what is made of earth are carried—the implication being that these
places do not differ merely in position, but also as possessing distinct powers. This
is made plain also by the objects studied by mathematics. Though they have no
place, they nevertheless, in respect of their position relatively to us, have a right
and left as these are spoken of merely in respect of relative position, not having by
nature these various characteristics. Again, the theory that the void exists involves the existence of place; for one would define void as place bereft of body.

These considerations then would lead us to suppose that place is something distinct from bodies, and that every sensible body is in place. Hesiod too might be held to have given a correct account of it when he made chaos first. At least he says: First of all things came chaos to being, then broadbreasted earth, implying that things need to have space first, because he thought, with most people, that everything is somewhere and in place. If this is its nature, the power of place must be a marvellous thing, and be prior to all other things. For that without which nothing else can exist, while it can exist without the others, must needs be first; for place does not pass out of existence when the things in it are annihilated.

True, but even if we suppose its existence settled, the question of what it is presents difficulty—whether it is some sort of ‘bulk’ of body or some entity other than that; for we must first determine its genus.

Now it has three dimensions, length, breadth, depth, the dimensions by which all body is bounded. But the place cannot be body; for if it were there would be two bodies in the same place.

Further, if body has a place and space, clearly so too have surface and the other limits of body; for the same argument will apply to them: where the bounding planes of the water were, there in turn will be those of the air. But when we come to a point we cannot make a distinction between it and its place. Hence if the place of a point is not different from the point, no more will that of any of the others be different, and place will not be something different from each of them.

What in the world, then, are we to suppose place to be? If it has the sort of nature described, it cannot be an element or composed of elements, whether these be corporeal or incorporeal; for while it has size, it has not body. But the elements of sensible bodies are bodies, while nothing that has size results from a combination of intelligible elements.

Also we may ask: of what in things is space the cause? None of the four modes of causation can be ascribed to it. It is neither cause in the sense of the matter of existents (for nothing is composed of it), nor as the form and definition of things, nor as end, nor does it move existents.

Further, too, if it is itself an existent, it will be somewhere. Zeno’s difficulty demands an explanation; for if everything that exists has a place, place too will have a place, and so on ad infinitum.

Again, just as every body is in place, so, too, every place has a body in it.

27 Theogony 116.
What then shall we say about growing things? It follows from these premisses that their place must grow with them, if their place is neither less nor greater than they are.

By asking these questions, then, we must raise the whole problem about place—not only as to what it is, but even whether there is such a thing.

§ 2. Something can be said of a subject either in virtue of itself or in virtue of something else; and there is place which is common and in which all bodies are, and which is the proper and primary location of each body. I mean, for instance, that you are now in the world because you are in the air and it is in the world; and you are in the air because you are on the earth; and similarly on the earth because you are in this place which contains no more than you.

Now if place is what primarily contains each body, it would be a limit, so that the place would be the form or shape of each body which the magnitude or the matter of the magnitude is defined; for this is the limit of each body.

If, then, we look at the question in this way the place of a thing is its form. But, if we regard the place as the extension of the magnitude, it is the matter. For this is different from the magnitude: it is what is contained and defined by the form, as by a bounding plane. Matter or the indeterminate is of this nature; for when the boundary and attributes of a sphere are taken away, nothing but the matter is left.

This is why Plato in the Timaeus says that matter and space are the same; for the ‘participant’ and space are identical. (It is true, indeed, that the account he gives there of the ‘participant’ is different from what he says in his so-called unwritten teaching. Nevertheless, he did identify place and space.) I mention Plato because, while all hold place to be something, he alone tried to say what it is.

In view of these facts we should naturally expect to find difficulty in determining what place is, if indeed it is one of these two things, matter or form. They demand a very close scrutiny, especially as it is not easy to recognize them apart.

But it is at any rate not difficult to see that place cannot be either of them. The form and the matter are not separate from the thing, whereas the place can be separated. As we pointed out, where air was, water in turn comes to be, the one replacing the other; and similarly with other bodies. Hence the place of a thing is neither a part nor a state of it, but is separable from it. For place is supposed to be something like a vessel—the vessel being a transportable place. But the vessel is no part of the thing.

In so far then as it is separable from the thing, it is not the form; and in so far as it contains it, it is different from the matter.
Also it is held that what is anywhere is both itself something and that there is a different thing outside it. (Plato of course, if we may digress, ought to tell us why the form and the numbers are not in place, if ‘what participates’ is place—whether what participates is the Great and the Small or the matter, as he has written in the *Timaeus*.)

Further, how could a body be carried to its own place, if place was the matter or the form? It is impossible that what has no reference to motion or the distinction of up and down can be place. So place must be looked for among things which have these characteristics.

If the place is in the thing (it must be if it is either shape or matter) place will have a place; for both the form and the indeterminate undergo change and motion along with the thing, and are not always in the same place, but are where the thing is. Hence the place will have a place.

Further, when water is produced from air, the place has been destroyed, for the resulting body is not in the same place. What sort of destruction then is that?

This concludes my statement of the reasons why place must be something, and again of the difficulties that may be raised about is essential nature.

§ 3 · The next step we must take is to see in how many ways one thing is said to be *in* another. In one way, as a finger is in a hand, and generally a part in a whole. In another way, as a whole is in its parts; for there is no whole over and above the parts. Again, as man is in animal, and in general a species in a genus. Again, as the genus is in the species, and in general a part of the species in its definition. Again, as health is in the hot and the cold, and in general the form in the matter. Again, as the affairs of Greece are in the King, and generally events are in their primary motive agent. Again, as a thing is in its good, and generally in its end, i.e. in that for the sake of which. And most properly of all, as something is in a vessel, and generally in a place.\(^{28}\)

One might raise the question whether a thing can be in itself, or whether nothing can be in itself—everything being either nowhere or in something else. The question is ambiguous; we may mean the thing *qua* itself or *qua* something else.

When there are parts of a whole—the one that in which a thing is, the other the thing which is in it—the whole will be described as being in itself. For a thing is described in terms of its parts, as well as in terms of the thing as a whole, e.g. a man is said to be white because the visible surface of him is white, or to be scientific because his thinking faculty is. The jar then will not be in itself and

\(^{28}\)Aristotle’s remarks rest on the use of the Greek preposition ‘*en*’, to which (evidently) the English ‘in’ does not precisely correspond.
the wine will not be in itself. But the jar of wine will; for the contents and the container are both parts of the same whole.

In this sense then, but not primarily, a thing can be in itself, namely, as white is in body (for the visible surface is in body), and science is in the mind.

It is from these, which are parts (in the sense at least of being in the man), that the man is called white, &c (But the jar and the wine in separation are not parts of a whole, though together they are.) So when there are parts, a thing will be in itself, as white is in man because it is in body, and in body because it resides in the visible surface. But it is not in surface in virtue of something else. And these things—the surface and the white—differ in form, and each has a different nature and power.

Thus if we look at the matter inductively we do not find anything to be in itself in any of the senses that have been distinguished; and it can be seen by argument that it is impossible. For each of two things will have to be both, e.g. the jar will have to be both vessel and wine, and the wine both wine and jar, if it is possible for a thing to be in itself; so that, however true it might be that they were in each other, the jar will receive the wine in virtue not of its being wine but of the wine’s being wine, and the wine will be in the jar in virtue not of its being a jar but of the jar’s being a jar. Now that they are different in respect of what they are is evident; for that in which something is and that which is in it would be differently defined.

Nor is it possible for a thing to be in itself even accidentally; for two things would be at the same time in the same thing. The jar would be in itself—if a thing whose nature it is to receive can be in itself; and that which it receives, namely (if wine) wine, will be in it.

Obviously then a thing cannot be in itself primarily.

Zeno’s problem—that if place is something it must be in something—is not difficult to solve. There is nothing to prevent the first place from being in something else—not indeed in that as in a place, but as health is in the hot as a state of it or as the hot is in body as an affection. So we escape the infinite regress.

Another thing is plain: since the vessel is no part of what is in it (what contains something primarily is different from what is contained), place could not be either the matter or the form of the thing contained, but must be different—for the latter, both the matter and the shape, are parts of what is contained.

This then may serve as a critical statement of the difficulties involved.

§ 4 · What then after all is place? The answer to this question may be elucidated as follows.

Let us take for granted about it the various characteristics which are supposed
correctly to belong to it essentially. We assume first that place is what contains that of which it is the place, and is no part of the thing; again, that the primary place of a thing is neither less nor greater than the thing; again, that place can be left behind by the thing and is separable; and in addition that all place admits of the distinction of up and down, and each of the bodies is naturally carried to its appropriate place and rests there, and this makes the place either up or down.

Having laid these foundations, we must complete the theory. We ought to try to conduct our inquiry into what place is in such a way as not only to solve the difficulties connected with it, but also to show that the attributes supposed to belong to it do really belong to it, and further to make clear the cause of the trouble and of the difficulties about it. In that way, each point will be proved in the most satisfactory manner.

First then we must understand that place would not have been inquired into, if there had not been motion with respect to place. It is chiefly for this reason that we suppose the heaven also to be in place, because it is in constant movement. Of this kind of motion there are two species—locomotion on the one hand and, on the other, increase and diminution. For these too involve change: what was then in this place has now in turn changed to what is larger or smaller.

Again, things are moved either in themselves, actually, or accidentally. In the latter case it may be either something which by its own nature is capable of being moved, e.g. the parts of the body or the nail in the ship, or something which is not in itself capable of being moved, but is always moved accidentally, as whiteness or science. These have changed their place only because the subjects to which they belong do so.

We say that a thing is in the world, in the sense of in place, because it is in the air, and the air is in the world; and when we say it is in the air, we do not mean it is in every part of the air, but that it is in the air because of the surface of the air which surrounds it; for if all the air were its place, the place of a thing would not be equal to the thing—which it is supposed to be, and which the primary place in which a thing is actually is.

When what surrounds, then, is not separate from the thing, but is in continuity with it, the thing is said to be in what surrounds it, not in the sense of in place, but as a part in a whole. But when the thing is separate and in contact, it is primarily in the inner surface of the surrounding body, and this surface is neither a part of what is in it nor yet greater than its extension, but equal to it; for the extremities of things which touch are coincident.

Further, if one body is in continuity with another, it is not moved in that but with that. On the other hand it is moved in that if it is separate. It makes no
difference whether what contains is moved or not.

[Again, when it is not separate it is described as a part in a whole, as the pupil in the eye or the hand in the body: when it is separate, as the water in the cask or the wine in the jar. For the hand is moved with the body and the water in the cask.] 29

It will now be plain from these considerations what place is. There are just four things of which place must be one—the shape, or the matter, or some sort of extension between the extremities, or the extremities (if there is no extension over and above the bulk of the body which comes to be in it).

Three of these it obviously cannot be. The shape is supposed to be place because it surrounds, for the extremities of what contains and of what is contained are coincident. Both the shape and the place, it is true, are boundaries. But not the same thing: the form is the boundary of the thing, the place is the boundary of the body which contains it.

The extension between the extremities is thought to be something, because what is contained and separate may often be changed while the container remains the same (as water may be poured from a vessel)—the assumption being that the extension is something over and above the body displaced. But there is no such extension. One of the bodies which change places and are naturally capable of being in contact with the container falls in—whichever it may chance to be.

If there were an extension which were such as to exist independently and be permanent, there would be an infinity of places in the same thing. For when the water and the air change places, all the portions of the two together will play the same part in the whole which was previously played by all the water in the vessel; at the same time the place too will be undergoing change; so that there will be another place which is the place of the place, and many places will be coincident. There is not a different place of the part, in which it is moved, when the whole vessel changes its place: it is always the same; for it is in the place where they are that the air and the water (or the parts of the water) succeed each other, not in that place in which they come to be, which is part of the place which is the place of the whole world.

The matter, too, might seem to be place, at least if we consider it in what is at rest and is not separate but in continuity. For just as in change of quality there is something which was formerly black and is now white, or formerly soft and now hard—this is why we say that the matter exists—so place, because it presents a similar phenomenon, is thought to exist only in the one case we say so because

29 Ross excises the bracketed lines as an alternative version of 211a29-36.
what was air is now water, in the other because where air formerly was there is now water. But the matter, as we said before, is neither separable from the thing nor contains it, whereas place has both characteristics.

Well, then, if place is none of the three—neither the form nor the matter nor an extension which is always there, different from, and over and above, the extension of the thing which is displaced—place necessarily is the one of the four which is left, namely, the boundary of the containing body at which it is in contact with the contained body. (By the contained body is meant what can be moved by way of locomotion.)

Place is thought to be something important and hard to grasp, both because the matter and the shape present themselves along with it, and because the displacement of the body that is moved takes place in a stationary container, for its seems possible that there should be an interval which is other than the bodies which are moved. The air, too, which is thought to be incorporeal, contributes something to the belief: it is not only the boundaries of the vessel which seem to be place, but also what is between them, regarded as empty. Just, in fact, as the vessel is transportable place, so place is a non-portable vessel. So when what is within a thing which is moved, is moved and changes, as a boat on a river, what contains plays the part of a vessel rather than that of place. Place on the other hand is rather what is motionless: so it is rather the whole river that is place, because as a whole it is motionless.

Hence the place of a thing is the innermost motionless boundary of what contains it.

This explains why the middle of the world and the surface which faces us of the rotating system are held to be up and down in the strict and fullest sense for all men: for the one is always at rest, while the inner side of the rotating body remains always coincident with itself. Hence since the light is what is naturally carried up, and the heavy what is carried down, the boundary which contains in the direction of the middle of the universe, and the middle itself, are down, and that which contains in the direction of the extremity, and the extremity itself, are up.

For this reason place is thought to be a kind of surface, and as it were a vessel, i.e. a container of the thing.

Further, place is coincident with the thing, for boundaries are coincident with the bounded.

§ 5 · If then a body has another body outside it and containing it, it is in place, and if not, not. That is why, even if there were to be water which had not
a container, the parts of it will be moved (for one part is contained in another),
while the whole will be moved in one sense, but not in another. For as a whole it
does not simultaneously change its place, though it will be moved in a circle; for
this place is the place of its parts. And some parts are moved, not up and down,
but in a circle; others up and down, such things namely as admit of condensation
and rarefaction.

As was explained, some things are potentially in place, others actually. So,
when you have a homogeneous substance which is continuous, the parts are po-
tentially in place: when the parts are separated, but in contact, like a heap, they
are actually in place.

Again, some things are per se in place, namely every body which is movable
either by way of locomotion or by way of increase is per se somewhere, but the
world, as has been said, is not anywhere as a whole, nor in any place, if, that is, no
body contains it. But the line on which it is moved provides a place for its parts;
for each is contiguous to the next.

Other things are in place accidentally, as the soul and the world. The latter is,
in a way, in place, for all its parts are; for on the circle one part contains another.
That is why the upper part is moved in a circle, while the universe is not anywhere.
For what is somewhere is itself something, and there must be alongside it some
other thing wherein it is and which contains it. But alongside the universe or the
Whole there is nothing outside the universe, and for this reason all things are in
the world; for the world, we may say, is the universe. Yet their place is not the
same as the world. It is part of it, the innermost part of it, which is in contact with
the movable body; and for this reason the earth is in water, and this in the air, and
the air in the aether, and the aether in the world, but we cannot go on and say that
the world is in anything else.

It is clear, too, from these considerations that all the problems which were
raised about place will be solved when it is explained in this way.

There is no necessity that the place should grow with the body in it, nor that
a point should have a place; nor that two bodies should be in the same place; nor
that place should be a corporeal interval (for what is between the boundaries of
the place is any body which may chance to be there, not an interval in body).

Further, place is indeed somewhere, not in the sense of being in a place, but as
the limit is in the limited; for not everything that is is in place, but only movable
body.

Also, it is reasonable that each kind of body should be carried to its own place.
For a body which is next in the series and in contact (not by compulsion) is akin,
and bodies which are united do not affect each other, while those which are in
contact interact on each other.

Nor is it without reason that each should remain naturally in its proper place.

For parts do, and that which is in a place has the same relation to its place as a separable part to its whole, as when one moves a part of water or air: so, too, air is related to water, for the one is like matter, the other form—water is the matter of air, air as it were the actuality of water; for water is potentially air, while air is potentially water, though in another way.

These distinctions will be drawn more carefully later. On the present occasion it was necessary to refer to them: what has now been stated obscurely will then be made more clear. If the matter and the fulfilment are the same thing (for water is both, the one potentially, the other in fulfilment), water will be related to air in a way as part to whole. That is why these have contact: it is organic union when both become actually one.

This concludes my account of place—both of its existence and of its nature.

§ 6 · The investigation of similar questions about the void, also, must be held to belong to the physicist—namely whether it exists or not, and how it exists or what it is—just as about place. The views taken of it involve arguments both for and against, in much the same sort of way. For those who hold that the void exists regard it as a sort of place or vessel which is supposed to be full when it holds the bulk which it is capable of containing, void when it is deprived of that—as if void and full and place were the same thing, though the essence of the three is different.

We must begin the inquiry by putting down the account given by those who say that it exists, then the account of those who say that it does not exist, and third the common opinions on these questions.

Those who try to show that the void does not exist do not disprove what people really mean by it, but only their erroneous way of speaking; this is true of Anaxagoras and of those who refute the existence of the void in this way. They show that air is something—by straining wine-skins and showing the resistance of the air, and by cutting it off in clepsydras. But people really mean by void an interval in which there is no sensible body. They hold that everything which is is body and say that what has nothing in it at all is void (so what is full of air is void). It is not then the existence of air that needs to be proved, but the non-existence of an interval, different from the bodies, either separable or actual—an interval which divides the whole body so as to break its continuity, as Democritus and

30See On Generation and Corruption I 3.
Aristotle

Leucippus hold, and many other physicists—or even perhaps as something which is outside the whole body, which remains continuous.

These people, then, have not reached even the threshold of the problem, but rather those who say that the void exists.

They argue, for one thing, that change in place (i.e. locomotion and increase) would not occur. For it is maintained that motion would seem not to exist, if there were no void, since what is full cannot contain anything more. If it could, and there were two bodies in the same place, it would also be true that any number of bodies could be together; for it is impossible to draw a line of division beyond which the statement would become untrue. If this were possible, it would follow also that the smallest body would contain the greatest; for many small things make a large thing: thus if many equal bodies can be in the same place, so also can many unequal bodies.

Melissus, indeed, actually argues from this that the universe is immovable; for if it were moved there must, he says, be void, but void is not among the things that exist.

This argument, then, is one way in which they show that there is a void.

They also reason from the fact that some things are observed to contract and be compressed, as people say that a cask will hold the wine along with the skins, which implies that the compressed body contracts into the voids present in it.

Again increase, too, is thought by everyone to take place by means of void; for nutriment is body, and it is impossible for two bodies to be together. Evidence of this they find also in what happens to ashes, which absorb as much water as the empty vessel.

The Pythagoreans, too, held that void exists and that it enters the world from the infinite air, the world inhaling also the void which distinguishes the natures of things, as if it were what separates and distinguishes the terms of a series. This holds primarily in the numbers; for the void distinguishes their nature.

These, then, and so many, are the main grounds on which people have argued for and against the existence of the void.

§ 7 · As a step towards settling which view is true, we must determine the meaning of the word.

The void is thought to be place with nothing in it. The reason for this is that people take what exists to be body, and hold that while every body is in place, void is place in which there is no body, so that where there is no body, there is nothing.

Every body, again, they suppose to be tangible; and of this nature is whatever
has weight or lightness. Hence, by deduction, what has nothing heavy or light in it, is void.

This result, then, as I have just said, is reached by deduction. It would be absurd to suppose that the point is void; for the void must be place which has in it an interval in tangible body.

But at all events we observe then that in one way the void is described as what is not full of body perceptible to touch; and what has heaviness and lightness is perceptible to touch. So we would raise the question: what would they say of an interval that has colour or sound—is it void or not? Clearly they would reply that if it could receive what is tangible it was void, and if not, not.

In another way void is that in which there is not ‘this’ or corporeal substance. Some say that the void is the matter of the body (they identify the place, too, with this), and in this they speak incorrectly; for the matter is not separable from the things, but they are inquiring about the void as about something separable.

Since we have determined the nature of place, and void must, if it exists, be place deprived of body, and we have stated both in what sense it does not, it is plain that on this showing void does not exist, either unseparated or separated; for the void is meant to be, not body but rather an interval in body. This is why the void is thought to be something, viz. because place is, and for the same reasons. For the fact of motion in respect of place comes to the aid both of those who maintain that place is something over and above the bodies that come to occupy it, and of those who maintain that the void is something. They state that the void is a cause of movement in the sense of that in which movement takes place; and this would be the kind of thing that some say place is.

But there is no necessity for there being a void if there is movement. It is not in the least needed as a condition of movement in general, for a reason which escaped Melissus; viz. that the full can suffer qualitative change.

But not even movement in respect of place involves a void; for bodies may simultaneously make room for one another, though there is no interval separate and apart from the bodies that are in movement. And this is plain even in the rotation of continuous things, as in that of liquids.

And things can also be compressed not into a void but because they squeeze out what is contained in them (as, for instance, when water is compressed the air within it is squeezed out); and things can increase in size not only by the entrance of something but also by qualitative change; e.g. if water were to be transformed into air.

In general, both the argument about increase of size and that about the water poured on to the ashes get in their own way. For either not any and every part of
the body is increased, or bodies may be increased otherwise than by the addition of body, or there may be two bodies in the same place (in which case they are claiming to solve a general difficulty, but are not proving the existence of void), or the whole body must be void, if it is increased in every part and is increased by means of void. The same argument applies to the ashes.

It is evident, then, that it is easy to refute the arguments by which they prove the existence of the void.

§ 8 · Let us explain again that there is no void existing separately, as some maintain. If each of the simple bodies has a natural locomotion, e.g. fire upward and earth downward and towards the middle of the universe, it is clear that the void cannot be a cause of locomotion. What, then, will the void be a cause of? It is thought to be a cause of movement in respect of place, and it is not a cause of this.

Again, if void is a sort of place deprived of body, when there is a void where will a body placed in it move to? It certainly cannot move into the whole of the void. The same argument applies as against those who think that place is something separate, into which things are carried; viz. how will what is placed in it move, or rest? The same argument will apply to the void as to the up and down in place, as is natural enough since those who maintain the existence of the void make it a place.

And in what way will things be present either in place or in the void? For the result does not take place when a body is placed as a whole in a place conceived of as separate and permanent; for a part of it, unless it be placed apart, will not be in a place but in the whole. Further, if separate place does not exist, neither will void.

If people say that the void must exist, as being necessary if there is to be movement, what rather turns out to be the case, if one studies the matter, is the opposite, that not a single thing can be moved if there is a void; for as with those who say the earth is at rest because of the uniformity, so, too, in the void things must be at rest; for there is no place to which things can move more or less than to another; since the void in so far as it is void admits no difference.

The second reason is this: all movement is either compulsory or according to nature, and if there is compulsory movement there must also be natural (for compulsory movement is contrary to nature, and movement contrary to nature is posterior to that according to nature, so that if each of the natural bodies has not a natural movement, none of the other movements can exist); but how can there be natural movement if there is no difference throughout the void or the infinite?
For in so far as it is infinite, there will be no up or down or middle, and in so far as it is a void, up differs no whit from down; for as there is no difference in what is nothing, there is none in the void (for the void seems to be a non-existent and a privation); but natural locomotion seems to be differentiated, so that the things that exist by nature must be differentiated. Either, then, nothing has a natural locomotion, or else there is no void.

Further, in point of fact things that are thrown move though that which gave them their impulse is not touching them, either by reason of mutual replacement, as some maintain, or because the air that has been pushed pushes them with a movement quicker than the natural locomotion of the projectile wherewith it moves to its proper place. But in a void none of these things can take place, nor can anything be moved save as that which is carried is moved.

Further, no one could say why a thing once set in motion should stop anywhere; for why should it stop here rather than here? So that a thing will either be at rest or must be moved ad infinitum, unless something more powerful gets in its way.

Further, things are now thought to move into the void because it yields; but in a void this quality is present equally everywhere, so that things should move in all directions.

Further, the truth of what we assert is plain from the following considerations. We see the same weight or body moving faster than another for two reasons, either because there is a difference in what it moves through, as between water, air, and earth, or because, other things being equal, the moving body differs from the other owing to excess of weight or of lightness.

Now the medium causes a difference because it impedes the moving thing, most of all if it is moving in the opposite direction, but in a secondary degree even if it is at rest; and especially a medium that is not easily divided, i.e. a medium that is somewhat dense.

A, then, will move through B in time C, and through D, which is thinner, in time E (if the length of B is equal to D), in proportion to the density of the hindering body. For let B be water and D air; then by so much as air is thinner and more incorporeal than water, A will move through D faster than through B. Let the speed have the same ratio to the speed, then, that air has to water. Then if air is twice as thin, the body will traverse B in twice the time that it does D, and the time C will be twice the time E. And always, by so much as the medium is more incorporeal and less resistant and more easily divided, the faster will be the movement.

Now there is no ratio in which the void is exceeded by body, as there is no
ratio of nought to a number. For if 4 exceeds 3 by 1, and 2 by more than 1, and I by still more than it exceeds 2, still there is no ratio by which it exceeds 0; for that which exceeds must be divisible into the excess and that which is exceeded, so that 4 will be what it exceeds 0 by and 0. For this reason, too, a line does not exceed a point—unless it is composed of points. Similarly the void can bear no ratio to the full, and therefore neither can movement through the one to movement through the other, but if a thing moves through the thinnest medium such and such a distance in such and such a time, it moves through the void with a speed beyond any ratio. For let F be void, equal to B and to D. Then if A is to traverse and move through it in a certain time, G, a time less than E, however, the void will bear this ratio to the full. But in a time equal to G, A will traverse the part H of D. And it will surely also traverse in that time any substance F which exceeds air in thinness in the ratio which the time E bears to the time G. For if the body F be as much thinner than D as E exceeds F, A, if it moves through G, will traverse it in a time inverse to the speed of the movement, i.e. in a time equal to F. If, then, there is no body in G, A will traverse G still more quickly. But we suppose that its traverse of G when G was void occupied the time F. So that it will traverse G in an equal time whether G be full or void. But this is impossible. It is plain, then, that if there is a time in which it will move through any part of the void, this impossible result will follow: it will be found to traverse a certain distance, whether this be full or void, in an equal time; for there will be some body which is in the same ratio to the other body as the time is to the time.

To sum the matter up, the cause of this result is obvious, viz. that between any two movements there is a ratio (for they occupy time, and there is a ratio between any two times, so long as both are finite), but there is no ratio of void to full.

These are the consequences that result from a difference in the media; the following depend upon an excess of one moving body over another. We see that bodies which have a greater impulse either of weight or of lightness, if they are alike in other respects, move faster over an equal space, and in the ratio which their magnitudes bear to each other. Therefore, they will also move through the void with this ratio of speed. But that is impossible; for why should one move faster? (In moving through plena it must be so; for the greater divides them faster by its force. For a moving thing cleaves the medium either by its shape, or by the impulse which the body that is carried along or is projected possesses.) Therefore all will possess equal velocity. But this is impossible.

It is evident from what has been said, then, that, if there is a void, a result follows which is the very opposite of the reason for which those who believe in a void set it up. They think that if movement in respect of place is to exist, the void
must exist, separated by itself; but this is the same as to say that place is separate; and this has already been stated to be impossible.

But even if we consider it on its own merits the so-called void will be found to be really vacuous. For as, if one puts a cube in water, an amount of water equal to the cube will be displaced, so too in air (but the effect is imperceptible to sense). And indeed always, in the case of any body that can be displaced, it must, if it is not compressed, be displaced in the direction in which it is its nature to be displaced—always either down, if its locomotion is downwards as in the case of earth, or up, if it is fire, or in both directions—whatever be the nature of the inserted body. Now in the void this is impossible; for it is not body; the void must have penetrated the cube to a distance equal to that which this portion of void formerly occupied in the void, just as if the water or air had not been displaced by the wooden cube, but had penetrated right through it.

But the cube also has a magnitude equal to that occupied by the void; a magnitude which, if it is also hot or cold, or heavy or light, is none the less different in essence from all its attributes, even if it is not separable from them; I mean the bulk of the wooden cube. So that even if it were separated from everything else and were neither heavy nor light, it will occupy an equal amount of void, and fill the same place, as the part of place or of the void equal to itself. How then will the body of the cube differ from the void or place that is equal to it? And if there can be two such things, why cannot there be any number coinciding?

This, then, is one absurd and impossible implication of the theory. It is also evident that the cube will have this same volume even if it is displaced, which is an attribute possessed by all other bodies also. Therefore if this differs in no respect from its place, why need we assume a place for bodies over and above the bulk of each, if their bulk be conceived of as free from attributes? It contributes nothing to the situation if there is an equal interval attached to it as well. [Further, it ought to be clear by the study of moving things what sort of thing void is. But in fact it is found nowhere in the world. For air is something, though it does not seem to be so—nor, for that matter, would water, if fishes were made of iron; for the discrimination of the tangible is by touch.]

It is clear, then, from these considerations that there is no separate void.

§ 9 · There are some who think that the existence of rarity and density shows that there is a void. If rarity and density do not exist, they say, neither can things contract and be compressed. But if this were not to take place, either there would
be no movement at all, or the universe would bulge, as Xuthus said, or air and water must always change into equal amounts (e.g. if air has been made out of a cupful of water, at the same time out of an equal amount of air a cupful of water must have been made), or void must necessarily exist; for compression and expansion cannot take place otherwise.

Now, if they mean by the rare that which has many voids existing separately, it is plain that if void cannot exist separate any more than a place can exist with an extension all to itself, neither can the rare exist in this sense. But if they mean that there is void, not separately existent, but still present in the rare, this is less impossible; yet, first, the void turns out not to be a cause of all movement, but only of movement upwards (for the rare is light, which is the reason why they say fire is rare); second, the void turns out to be a cause of movement not as that in which it takes place, but in that the void carries things up as skins by being carried up themselves carry up what is continuous with them. Yet how can void have a local movement or a place? For thus that into which void moves is till then void of a void.

Again, how will they explain, in the case of what is heavy, its movement downwards? And it is plain that if the rarer and more void a thing is the quicker it will move upwards, if it were completely void it would move with a maximum speed. But perhaps even this is impossible, that it should move at all; the same reason which showed that in the void all things are incapable of moving shows that the void cannot move, viz., the fact that the speeds are incomparable.

Since we deny that a void exists, but for the rest the problem has been truly stated, that either there will be no movement, if there is no condensation and rarefaction, or the universe will bulge, or a transformation of water into air will always be balanced by an equal transformation of air into water (for it is clear that more air is produced from the water: it is necessary therefore, if compression does not exist, either that the next portion will be pushed outwards and make the outermost part bulge, or that somewhere else there must be an equal amount of water produced out of air, so that the entire bulk of the whole may be equal, or that nothing moves. For when anything is displaced this will always happen, unless it comes round in a circle; but locomotion is not always circular, but sometimes in a straight line)—these then are the reasons for which they might say that there is a void; our statement is based on the assumption that there is a single matter for contraries, hot and cold and the other natural contrarieties, and that what is actually is produced from what is potentially, and that matter is not separable from the contraries but its being is different, and that a single matter may serve for colour and heat and cold.
The same matter also serves for both a large and a small body. This is evident; for when air is produced from water, the same matter has become something different, not by acquiring an addition to it, but has become actually what it was potentially; and, again, water is produced from air in the same way, the change being sometimes from smallness to greatness, and sometimes from greatness to smallness. Similarly, therefore, if air which is large in extent comes to have a smaller bulk, or becomes greater from being smaller, it is the matter which is potentially both that comes to be each of the two.

For as the same matter becomes hot from being cold, and cold from being hot, because it was potentially both, so too from hot it can become more hot, though nothing in the matter has become hot that was not hot when the thing was less hot; just as, if the arc or curve of a greater circle becomes that of a smaller, whether it remains the same or becomes a different curve, convexity has not come to exist in anything that was not convex but straight (for differences of degree do not depend on an intermission of the quality); nor can we get any portion of a flame, in which both heat and whiteness are not present. So too, then, is the earlier heat related to the later. So that the greatness and smallness, also, of the sensible bulk are extended, not by the matter’s acquiring anything new, but because the matter is potentially matter for both states; so that the same thing is dense and rare, and the two qualities have one matter.

The dense is heavy, and the rare is light. [Again, as the arc of a circle when contracted into a smaller space does not acquire a new part which is convex, but what was there had been contracted; and as any part of fire that one takes will be hot; so, too, it is all a question of contraction and expansion of the same matter.]32 There are two types in each case, both in the dense and in the rare; for both the heavy and the hard are thought to be dense, and contrariwise both the light and the soft are rare; and weight and hardness fail to coincide in the case of lead and iron.

From what has been said it is evident, then, that void does not exist either separate (either absolutely separate or as a separate element in the rare) or potentially, unless one is willing to call the cause of movement void, whatever it may be. At that rate the matter of the heavy and the light; qua matter of them, would be the void; for the dense and the rare are productive of locomotion in virtue of this contrariety, and in virtue of their hardness and softness productive of passivity and impassivity, i.e. not of locomotion but rather of qualitative change.

So much, then, for the discussion of the void, and of the sense in which it

32The words in brackets are excised as an alternative version of 217b2-11.
§ 10 · Next for discussion after the subjects mentioned is time. The best plan will be to begin by working out the difficulties connected with it, making use of the current arguments. First, does it belong to the class of things that exist or to that of things that do not exist? Then secondly, what is its nature? To start, then: the following considerations would make one suspect that it either does not exist at all or barely, and in the obscure way. One part of it has been and is not, while the other is going to be and is not yet. Yet time—both infinite time and any time you like to take—is made up of these. One would naturally suppose that what is made up of things which do not exist could have no share in reality.

Further, if a divisible thing is to exist, it is necessary that, when it exists, all or some of its parts must exist. But of time some parts have been, while others are going to be, and no part of it is, though it is divisible. For the ‘now’ is not a part: a part is a measure of the whole, which must be made up of parts. Time, on the other hand, is not held to be made up of ‘nows’.

Again, the ‘now’ which seems to bound the past and the future—does it always remain one and the same or is it always other and other? It is hard to say.

If it is always different and different, and if none of the parts in time which are other and other are simultaneous (unless the one contains and the other is contained, as the shorter time is by the longer), and if the ‘now’ which is not, but formerly was, must have ceased to be at some time, the ‘nows’ too cannot be simultaneous with one another, but the prior ‘now’ must always have ceased to be. But the prior ‘now’ cannot have ceased to be in itself (since it then existed); yet it cannot have ceased to be in another ‘now’. For we may lay it down that one ‘now’ cannot be next to another, any more than a point to a point. If then it did not cease to be in the next ‘now’ but in another, it would exist simultaneously with the innumerable ‘nows’ between the two—which is impossible.

Yes, but neither is it possible for the ‘now’ to remain always the same. No determinate divisible thing has a single termination, whether it is continuously extended in one or in more than one dimension; but the ‘now’ is a termination, and it is possible to cut off a determinate time. Further, if coincidence in time (i.e. being neither prior nor posterior) means to be in one and the same ‘now’, then, if both what is before and what is after are in this same ‘now’, things which happened ten thousand years ago would be simultaneous with what has happened to-day, and nothing would be before or after anything else.

This may serve as a statement of the difficulties about the attributes of time.

As to what time is or what is its nature, the traditional accounts give us as little
light as the preliminary problems which we have worked through.

Some assert that it is the movement of the whole, others that it is the sphere itself.

Yet part, too, of the revolution is a time, but it certainly is not a revolution; for what is taken is part of a revolution, not a revolution. Besides, if there were more heavens than one, the movement of any of them equally would be time, so that there would be many times at the same time.

Those who said that time is the sphere of the whole thought so, no doubt, on the ground that all things are in time and all things are in the sphere of the whole. The view is too naive for it to be worth while to consider the impossibilities implied in it.

But as time is most usually supposed to be motion and a kind of change, we must consider this view.

Now the change or movement of each thing is only in the thing which changes or where the thing itself which moves or change may chance to be. But time is present equally everywhere and with all things.

Again, change is always faster or slower, whereas time is not; for fast and slow are defined by time—fast is what moves much in a short time, slow what moves little in a long time; but time is not defined by time, by being either a certain amount or a certain kind of it.

Clearly then it is not movement. (We need not distinguish at present between movement and change.)

§ 11 · But neither does time exist without change; for when the state of our minds does not change at all, or we have not noticed its changing, we do not think that time has elapsed, any more than those who are fabled to sleep among the heroes in Sardinia do when they are awakened; for they connect the earlier ‘now’ with the later and make them one, cutting out the interval because of their failure to notice it. So, just as, if the ‘now’ were not different but one and the same, there would not have been time, so too when its difference escapes our notice the interval does not seem to be time. If, then, the non-realization of the existence of time happens to us when we do not distinguish any change, but the mind seems to stay in one indivisible state, and when we perceive and distinguish we say time has elapsed, evidently time is not independent of movement and change. It is evident, then, that time is neither movement nor independent of movement.

We must take this as our starting-point and try to discover—since we wish to know what time is—what exactly it has to do with movement.

Now we perceive movement and time together; for even when it is dark and
we are not being affected through the body, if any movement takes place in the mind we at once suppose that some time has indeed elapsed; and not only that but also, when some time is thought to have passed, some movement also along with it seems to have taken place. Hence time is either movement or something that belongs to movement. Since then it is not movement, it must be the other.

But what is moved is moved from something to something, and all magnitude is continuous. Therefore the movement goes with the magnitude. Because the magnitude is continuous, the movement too is continuous, and if the movement, then the time; for the time that has passed is always thought to be as great as the movement.

The distinction of before and after holds primarily, then, in place; and there in virtue of relative position. Since then before and after hold in magnitude, they must hold also in movement, these corresponding to those. But also in time the distinction of before and after must hold; for time and movement always correspond with each other. The before and after in motion identical in substratum with motion yet differs from it in in, and is not identical with motion.

But we apprehend time only when we have marked motion, marking it by before and after; and it is only when we have perceived before and after in motion that we say that time has elapsed. Now we mark them by judging that one thing is different from another, and that some third thing is intermediate to them. When we think of the extremes as different from the middle and the mind pronounces that the ‘nows’ are two, one before and one after, it is then that we say that there is time, and this that we say is time. For what is bounded by the ‘now’ is thought to be time—we may assume this.

When, therefore, we perceive the ‘now’ as one, and neither as before and after in a motion nor as the same element but in relation to a ‘before’ and an ‘after’, no time is thought to have elapsed, because there has been no motion either. On the other hand, when we do perceive a ‘before’ and an ‘after’, then we say that there is time. For time is just this—number of motion in respect of ‘before’ and ‘after’.

Hence time is not movement, but only movement in so far as it admits of enumeration. An indication of this: we discriminate the more or the less by number, but more or less movement by time. Time then is a kind of number. (Number, we must note, is used in two ways—both of what is counted or countable and also of that with which we count. Time, then, is what is counted, not that with which we count: these are different kinds of thing.)

Just as motion is a perpetual succession, so also is time. But every simultaneous time is the same; for the ‘now’ is the same in substratum—though its being is different—and the ‘now’ determines time, in so far as time involves the before
and after.

The ‘now’ in one sense is the same, in another it is not the same. In so far as it is in succession, it is different (which is just what its being now was supposed to mean), but its substratum is the same; for motion, as was said, goes with magnitude, and time, as we maintain, with motion. Similarly, then, there corresponds to the point the body which is carried along, and by which we are aware of the motion and of the before and after involved in it. This is an identical substratum (whether a point or a stone or something else of the kind), but it is different in definition—as the sophists assume that Coriscus’ being in the Lyceum is a different thing from Coriscus’ being in the market-place. And the body which is carried along is different, in so far as it is at one time here and at another there. But the ‘now’ corresponds to the body that is carried along, as time corresponds to the mention. For it is by means of the body that is carried along that we become aware of the before and after in the motion, and if we regard these as countable we get the ‘now’. Hence in these also the ‘now’ as substratum remains the same (for it is what is before and after in movement), but its being is different; for it is in so far as the before and after is that we get the ‘now’. This is what is most knowable; for motion is known because of that which is moved, locomotion because of that which is carried. For what is carried is a ‘this’, the movement is not. Thus the ‘now’ in one sense is always the same, in another it is not the same; for this is true also of what is carried.

Clearly, too, if there were no time, there would be no ‘now’, and vice versa. Just as the moving body and its locomotion involve each other mutually, so too do the number of the moving body and the number of its locomotion. For the number of the locomotion is time, while the ‘now’ corresponds to the moving body, and is like the unit of number.

Time, then, also is both made continuous by the ‘now’ and divided at it. For here too there is a correspondence with the locomotion and the moving body. For the motion or locomotion is made one by the thing which is moved, because it is one—not because it is one in substratum (for there might be pauses in the movement of such a thing)—but because it is one in definition; for this determines the movement as ‘before’ and ‘after’. Here, too, there is a correspondence with the point; for the point also both connects and terminates the length—it is the beginning of one and the end of another. But when you take it in this way, using the one point as two, a pause is necessary, if the same point is to be the beginning and the end. The ‘now’ on the other hand, since the body carried is moving, is always different.

Hence time is not number in the sense in which there is number of the same
point because it is beginning and end, but rather as the extremities of a line form a number, and not as the parts of the line do so, both for the reason given (for we can use the middle point as two, so that on that analogy time might stand still), and further because obviously the ‘now’ is no part of time nor the section any part of the movement, any more than the points are parts of the line—for it is two lines that are parts of one line.

In so far then as the ‘now’ is a boundary, it is not time, but an attribute of it; in so far as it numbers, it is number; for boundaries being only to that which they bound, but number (e.g. ten) is the number of these horses, and belongs also elsewhere.

It is clear, then, that time is number of movement in respect of the before and after, and is continuous since it is an attribute of what is continuous.

The smallest number, in the strict sense, is two. But of number as concrete, sometimes there is a minimum, sometimes not: e.g. of a line, the smallest in respect of multiplicity is two (or, if you like, one), but in respect of size there is no minimum; for every line is divided ad infinitum. Hence it is so with time. In respect of number the minimum is one (or two); in point of extent there is no minimum.

It is clear, too, that time is not described as fast or slow, but as many or few and as long or short. For as continuous it is long or short and as a number many or few; but it is not fast or slow—any more than any number with which we count is fast or slow.

Further, there is the same time everywhere at once, but not the same time before and after; for while the present change is one, the change which has happened and that which will happen are different. Time is not number with which we count, but the number of things which are counted; and this according as it occurs before or after is always different, for the ‘nows’ are different. And the number of a hundred horses and a hundred men is the same, but the things numbered are different—the horses for the men. Further, as a movement can be one and the same again and again, so too can time, e.g. a year or a spring or an autumn.

Not only do we measure the movement by the time, but also the time by the movement, because they define each other. The time marks the movement, since it is its number, and the movement the time. We describe the time as much or little, measuring it by the movement, just as we know the number by what is numbered, e.g. the number of the horses by one horse as the unit. For we know how many horses there are by the use of the number; and again by using the one horse as unit we know the number of the horses itself. So it is with the time and the movement; for we measure the movement by the time and vice versa. It is reasonable that this
should happen; for the movement goes with the distance and the time with the
movement, because they are quanta and continuous and divisible. The movement
has these attributes because the distance is of this nature, and the time has them
because of the movement. And we measure both the distance by the movement
and the movement by the distance; for we say that the road is long, if the journey
is long and that this is long, if the road is long—the time, too, if the movement,
and the movement, if the time.

Time is a measure of motion and of being moved, and it measures the motion
by determining a motion which will measure the whole motion, as the cubit does
the length by determining an amount which will measure out the whole. Further
to be in time means, for movement, that both it and its essence are measured by
time (for simultaneously it measures both the movement and its essence, and this
is what being in time means for it, that its essence should be measured).

Clearly, then, to be in time has the same meaning for other things also, namely,
that their being should be measured by time. To be in time is one of two things:
to exist when time exists, and as we say of some things that they are ‘in number’.
The latter means either what is a part or mode of number—in general, something
which belongs to number—or that things have a number.

Now, since time is number, the ‘now’ and the before and the like are in time,
just as unit and odd and even are in number, i.e. in the sense that the one set
belongs to number, the other to time. But things are in time as they are in number.
If this is so, they are contained by time as things in number are contained by
number and things in place by place.

Plainly, too, to be in time does not mean to coexist with time, any more than
to be in motion or in place means to coexist with motion or place. For if ‘to be
in something’ is to mean this, then all things will be in anything, and the world
will be in a grain; for when the grain is, then also is the world. But this is acci-
dental, whereas the other is necessarily involved: that which is in time necessarily
involves that there is time when it is, and that which is in motion that there is
motion when it is.

Since what is in time is so in the same sense as what is in number is so, a
time greater than everything in time can be found. So it is necessary that all the
things in time should be contained by time, just like other things also which are in
anything, e.g. the things in place by place.

A thing, then, will be affected by time, just as we are accustomed to say that
time wastes things away, and that all things grow old through time, and that people
forget owing to the lapse of time, but we do not say the same of getting to know
or of becoming young or fair. For time is by its nature the cause rather of decay,
since it is the number of change, and change removes what is.

Hence, plainly, things which are always are not, as such, in time; for they are not contained by time, nor is their being measured by time. An indication of this is that none of them is affected by time, which shows that they are not in time.

Since time is the measure of motion, it will be the measure of rest too. For all rest is in time. For it does not follow that what is in time is moved, though what is in motion is necessarily moved. For time is not motion, but number of motion; and what is at rest can be in the number of motion. Not everything that is not in motion can be said to be at rest—but only that which can be moved, though it actually is not moved, as was said above.

To be in number means that there is a number of the thing, and that its being is measured by the number in which it is. Hence if a thing is in time it will be measured by time. But time will measure what is moved and what is at rest, the one qua moved, the other qua at rest; for it will measure their motion and rest respectively.

Hence what is moved will not be measured by the time simply in so far as it has quantity, but in so far as its motion has quantity. Thus none of the things which are neither moved nor at rest are in time; for to be in time is to be measured by time, while time is the measure of motion and rest.

Plainly, then, neither will everything that does not exist be in time, i.e. those non-existent things that cannot exist, as the diagonal’s being commensurate with the side.

Generally, if time is the measure of motion in itself and of other things accidentally, it is clear that a thing whose being is measured by it will have its being in rest or motion. Those things therefore which are subject to perishing and becoming—generally, those which at one time exist, at another do not—are necessarily in time; for there is a greater time which will extend both beyond their being and beyond the time which measures their being. Of things which do not exist but are contained by time some were, e.g. Homer once was, some will be, e.g. a future event; this depends on the direction in which time contains them; if on both, they have both modes of existence. As to such things as it does not contain in any way, they neither were nor are nor will be. These are those non-existents whose opposites always are, as the incommensurability of the diagonal always is—and this will not be in time. Nor will the commensurability, therefore; hence this eternally is not, because it is contrary to what eternally is. A thing whose contrary is not eternal can be and not be, and it is of such things that there is coming to be and passing away.
§ 13 · The ‘now’ is the link of time, as has been said (for it connects past and future time), and it is a limit of time (for it is the beginning of the one and the end of the other). But this is not obvious as it is with the point, which is fixed. It divides potentially, and in so far as it is dividing the ‘now’ is always different, but in so far as it connects it is always the same, as it is with mathematical lines. For the intellect it is not always one and the same point, since it is other and other when one divides the line; but in so far as it is one, it is the same in every respect.

So the ‘now’ also is in one way a potential dividing of time, in another the termination of both parts, and their unity. And the dividing and the uniting are the same thing and in the same reference, but in essence they are not the same.

So one kind of ‘now’ is described in this way: another is when the time of something is near. He will come now, because he will come to-day; he has come now, because he came to-day. But the things in the Iliad have not happened now, nor is the flood now—not that the time from now to them is not continuous, but because they are not near.

‘At some time’ means a time determined in relation to the first of the two types of ‘now’, e.g. at some time Troy was taken, and at some time there will be a flood; for it must be determined with reference to the ‘now’. There will thus be a determinate time from this ‘now’ to that, and there was such in reference to the past event. But if there be no time which is not ‘sometime’, every time will be determined.

Will time then fail? Surely not, if motion always exists. Is time then always different or does the same time recur? Clearly, it is the same with time as with motion. For if one and the same motion sometimes recurs, it will be one and the same time, and if not, not.

Since the ‘now’ is an end and a beginning of time, not of the same time however, but the end of that which is past and the beginning of that which is to come, it follows that, as the circle has its convexity and its concavity, in a sense, in the same thing, so time is always at a beginning and at an end. And for this reason it seems to be always different; for the ‘now’ is not the beginning and the end of the same thing; if it were, it would be at the same time and in the same respect two opposites. And time will not fail; for it is always at a beginning.

‘Just now’ refers to the part of future time which is near the indivisible present ‘now’ (When are you walking?—Just now; because the time in which he is going to do so is near), and to the part of past time which is not far from the ‘now’ (When are you walking?—I have been walking just now). But to say that Troy has just now been taken—we do not say that, because it is too far from the ‘now’. ‘Lately’, too, refers to the part of past time which is near the present ‘now’. ‘When did you
go?’ ‘Lately’, if the time is near the existing now. ‘Long ago’ refers to the distant past.

‘Suddenly’ refers to what has departed from its former condition in a time imperceptible because of its smallness; but it is the nature of all change to alter things from their former condition. In time all things come into being and pass away; for which reason some called it the wisest of all things, but the Pythagorean Paron called it the most stupid, because in it we also forget; and his was the truer view. It is clear then that it must be in itself, as we said before, a cause of destruction rather than of coming into being (for change, in itself, makes things depart from their former condition), and only accidentally of coming into being, and of being. A sufficient evidence of this is that nothing comes into being without itself moving somehow and acting, but a thing can be destroyed even if it does not move at all. And this is what, as a rule, we chiefly mean by a thing’s being destroyed by time. Still, time does not work even this change; but this sort of change too happens to occur in time.

We have stated, then, that time exists and what it is, and in how many ways we speak of the ‘now’, and what ‘at some time’, ‘lately’, ‘just now’, ‘long ago’, and ‘suddenly’ mean.

§ 14 · These distinctions having been drawn, it is evident that every change and everything that moves is in time; for the distinction of faster and slower exists in reference to all change, since it is found in every instance. In the phrase ‘moving faster’ I refer to that which changes before another into the condition in question, when it moves over the same interval and with a regular movement; e.g. in the case of locomotion, if both things move along the circumference of a circle, or both along a straight line; and similarly in all other cases. But what is before is in time; for we say ‘before’ and ‘after’ with reference to the distance from the ‘now’, and the ‘now’ is the boundary of the past and the future; so that since ‘nows’ are in time, the before and the after will be in time too; for in that in which the ‘now’ is, the distance from the ‘now’ will also be. But ‘before’ is used contrariwise with reference to past and to future time; for in the past we call ‘before’ what is farther from the ‘now’, and ‘after’ what is nearer, but in the future we call the nearer ‘before’ and the farther ‘after’. So that since the ‘before’ is in time, and every movement involves a ‘before’, evidently every change and every movement is in time.

It is also worth considering how time can be related to the soul; and why time is thought to be in everything, both in earth and in sea and in heaven. It is because it is an attribute, or state, of movement (since it is the number of movement) and
all these things are movable (for they are all in place), and time and movement are

together, both in respect of potentiality and in respect of actuality?

Whether if soul did not exist time would exist or not, is a question that may
fairly be asked; for if there cannot be some one to count there cannot be anything
that can be counted either, so that evidently there cannot be number; for number
is either what has been, or what can be, counted. But if nothing but soul, or in
soul reason, is qualified to count, it is impossible for there to be time unless there
is soul, but only that of which time is an attribute, i.e. if movement can exist
without soul. The before and after are attributes of movement, and time is these
qua countable.

One might also raise the question what sort of movement time is the number
of. Must we not say ‘of any kind’? For things both come into being in time and
pass away, and grow, and are altered, and are moved locally; thus it is of each
movement qua movement that time is the number. And so it is simply the number
of continuous movement, not of any particular kind of it.

But other things as well may have been moved now, and there would be a
number of each of the two movements. Is there another time, then, and will there
be two equal times at once? Surely not. For a time that is both equal and simul-
taneous is one and the same time, and even those that are not simultaneous are
one in kind; for if there were dogs, and horses, and seven of each, it would be the
same number. So, too, movements that have simultaneous limits have the same
time, yet the one may in fact be fast and the other not, and one may be locomotion
and the other alteration; still the time of the two changes is the same if it is both
equal and simultaneous; and for this reason, while the movements are different
and separate, the time is everywhere the same, because the number of equal and
simultaneous movements is everywhere one and the same.

Now there is such a thing as locomotion, and in locomotion there is included
circular movement, and everything is counted by some one thing homogeneous
with it, units by a unit, horses by a horse, and similarly times by some definite
time, and, as we said, time is measured by motion as well as motion by time (this
being so because by a motion definite in time the quantity both of the motion and
of the time is measured): if, then, what is first is the measure of everything homo-
genous with it, regular circular motion is above all else the measure, because the
number of this is the best known. Now neither alteration nor increase nor coming
into being can be regular, but locomotion can be. This also is why time is thought
to be the movement of the sphere, viz. because the other movements are measured
by this, and time by this movement.

This also explains the common saying that human affairs form a circle, and
that there is a circle in all other things that have a natural movement and coming into being and passing away. This is because all other things are discriminated by time, and end and begin as though conforming to a cycle; for even time itself is though to be a circle. And this opinion again is held because time is a measure of this kind of locomotion and is itself measured by such. So that to say that the things that come into being form a circle is to say that there is a circle of time; and this is to say that it is measured by the circular movement; for apart from the measure nothing else is observed in what is measured; the whole is just a plurality of measures.

It is said rightly, too, that the number of the sheep and of the dogs is the same number if the two numbers are equal, but not the same decad or the same ten; just as the equilateral and the scalene are not the same triangle, yet they are the same figure, because they are both triangles. For things are called the same so-and-so if they do not differ by a differentia of that thing, but not if they do; e.g. triangle differs from triangle by a differentia of triangle, therefore they are different triangles; but they do not differ by a differentia of figure, but are in one and the same division of it. For a figure of one kind is a circle and a figure of another kind a triangle, and a triangle of one kind is equilateral and a triangle of another kind scalene. They are the same figure, then, and that is a triangle, but not the same triangle. Therefore the number of two groups also is the same number (for their number does not differ by a differentia of number), but it is not the same decad; for the things of which it is asserted differ; one group are dogs, and the other horses.

We have now discussed time—both time itself and the matters appropriate to the consideration of it.
§ 1 · Everything which changes does so in one of three ways. It may accidentally, as for instance when we say that something musical walks, that which walks being something in which aptitude for music is an accident. Again, a thing is said without qualification to change because something belonging to it changes, i.e. in statements which refer to part of the thing in question: thus the body is restored to health because the eye or the chest, that is to say a part of the whole body, is restored to health. And there is the case of a thing which is in motion neither accidentally nor in respect of something else belonging to it, but in virtue of being itself directly in motion. Here we have a thing which is essentially movable: and that which is so is a different thing according to the particular variety of motion: for instance it may be a thing capable of alteration—and within the sphere of alteration it is again a different thing according as it is capable of being restored to health or capable of being heated. And there are the same distinctions in the case of the mover: one thing causes motion accidentally, another partially (because something belonging to it causes motion), another of itself directly, as, for instance, the physician heals, the hand strikes. We have, then, the following factors: that which directly causes motion, and that which is in motion; further, that in which motion takes place, namely time, and (distinct from these three) that from which and that to which it proceeds (for every motion proceeds from something and to something, that which is directly in motion being distinct from that to which it is in motion and that from which it is in motion: for instance, wood, hot, and cold—the first is that which is in motion, the second is that to which the motion proceeds, and the third is that from which it proceeds). This being so, it is clear that the motion is in the wood, not in its form; for the motion is neither caused nor experienced by the form or the place or the quantity. So we are left with a mover, a moved, and that to which the motion proceeds; for it is that to which rather than that from which the motion proceeds that gives its name to the change. Thus perishing is change to not-being, thought it is also true that that which perishes changes from being; and becoming is change to being, though it is also change from not-being.

Now a definition of motion has been given above. Every goal of motion, whether it be a form, an affection, or a place, is immovable, as, for instance,
knowledge and heat. Here, however, a difficulty may be raised. Affections, it may be said, are motions, and whiteness is an affection: thus there may be change to a motion. To this we may reply that it is not whiteness but whitening that is a motion. Here also things may hold accidentally, or partially and with reference to something other than itself, or directly and with no reference to anything else: for instance, a thing which is becoming white changes accidentally to an object of thought, the colour being only accidentally the object of thought; it changes to colour, because white is a part of colour (or to Europe, because Athens is a part of Europe); but it changes essentially to white colour. It is now clear in what way a thing is in motion essentially or accidentally, and in respect of something other than itself or itself directly moving—in the case both of the mover and of the moved; and it is also clear that the motion is not in the form but in that which is in motion, that is to say the movable in actuality. Now accidental change we may leave out of account; for it is to be found in everything, at any time, and in any subject. Change which is not accidental on the other hand is not to be found in everything, but only in contraries, in things intermediate between contraries, and in contradictories, as may be shown by induction. An intermediate may be a starting-point of change, since it serves as contrary to either of two contraries; for the intermediate is in a sense the extremes. Hence we speak of the intermediate as in a sense a contrary relatively to the extremes and of either extreme as a contrary relatively to the intermediate: for instance, the central note is low relatively to the highest and high relatively to the lowest, and grey is white relatively to black and black relatively to white.

And since every change is from something to something—as the word itself indicates, implying something ‘after’ something else, that is to say something earlier and something later33—that which changes must change in one of four ways: from subject to subject, from subject to non-subject, from non-subject to subject, or from non-subject to non-subject, where by ‘subject’ I mean what is affirmatively expressed. So it follows necessarily from what has been said that there are three kinds of change, that from subject to subject, that from subject to non-subject, and that from non-subject to subject; for that from non-subject to non-subject is not change, as in that case there is no opposition either of contraries or of contradictories.

Now change from non-subject to subject, the relation being that of contradiction, is coming to be—unqualified coming to be when the change takes place in an unqualified way, particular coming to be when the change is change in a par-

33Change = metabole, in which Aristotle construes ‘meta’ in the sense of ‘after’.
ticular character: for instance, a change from not-white to white is a coming to be of the particular thing, white, while change from unqualified not-being to being is coming to be in an unqualified way, in respect of which we say that a thing comes to be without qualification, not that it comes to be some particular thing. Change from subject to non-subject is perishing—unqualified perishing when the change is from being to not-being, particular perishing when the change is to the opposite negation, the distinction being the same as that made in the case of coming to be.

Now things are said not to be in several ways; and there can be motion neither of that which is not in respect of the affirmation or negation of a predicate, nor of that which is not in the sense that it only potentially is, that is to say the opposite of that which actually is in an unqualified sense; for although that which is not white or not good may nevertheless be in motion accidentally (for example that which is not white might be a man), yet that which is without qualification not a ‘this’ cannot in any sense be in motion: therefore it is impossible for that which is not to be in motion. This being so, it follows that becoming cannot be a motion; for it is that which is not that becomes. For however true it may be that it accidentally becomes, it is nevertheless correct to say that it is that which is not that in an unqualified sense becomes. And similarly it is impossible for that which is not to be at rest.

There are these difficulties, then, [in the way of the assumption that that which is not can be in motion], 34 and it may be further objected that, whereas everything which is in motion is in place, that which is not is not in place; for then it would be somewhere.

So, too, perishing is not a motion; for a motion has for its contrary either another motion or rest, whereas perishing is the contrary of becoming.

Since, then, every motion is a kind of change, and there are only the three kinds of change mentioned above; and since of these three those which take the form of becoming and perishing, that is to say those which imply a relation of contradiction, are not motions: it necessarily follows that only change from subject to subject is motion. And every such subject is either a contrary or an intermediate (for a privation may be allowed to rank as a contrary) and can be affirmatively expressed, as naked, toothless, or black. If, then, the categories are severally distinguished as substance, quality, place, [time], 35 relation, quantity, and activity or passivity, it necessarily follows that there are three kinds of motion—qualitative, quantitative, and local.

34Ross excises the clause in brackets.
35Ross brackets kai to pote.
§ 2 · In respect of substance there is no motion, because substance has no contrary among things that are. Nor is there motion in respect of relation; for it may happen that when one correlative changes, the other, although this does not itself change, may be true or not true, so that in these cases the motion is accidental. Nor is there motion in respect of agent and patient—in fact there can never be motion of mover and moved, because there cannot be motion of motion or becoming of becoming or in general change of change.

For in the first place there are two ways in which motion of motion is conceivable. The motion of which there is motion might be conceived as subject; e.g. a man is in motion because he changes from fair to dark. Can it be that in this sense motion grows hot or cold, or changes place, or increases or decreases? Impossible; for change is not a subject. Or can there be motion of motion in the sense that some other subject changes from a change to another mode of being [as that of a man from illness to health]?34 Even this is possible only in an accidental sense. For the movement itself is change from one form to another, [as that of a man from illness to health.36 (And the same holds good of becoming and perishing, except that in these processes we have a change to a particular kind of opposite, while the other, motion, is a change to a different kind.) So, if there is to be motion of motion, that which is changing from health to sickness must simultaneuously be changing from this very change to another. It is clear, then, that by the time that he has become sick, he must also have changed to whatever may be the other change concerned (for he could be at rest). Moreover this other can never be any casual change, but must be a change from something definite to some other definite thing. So in this case it must be the opposite change, viz. convalescence. It is only accidentally that there can be change of change, e.g. there is a change from remembering to forgetting only because the subject of this change changes at one time to knowledge, at another to ignorance.

Again, if there is to be change of change and becoming of becoming, we shall have an infinite regress. Thus if one of a series of changes is to be a change of change, the preceding change must also be so: e.g. if simple becoming was ever in process of becoming, then that which was becoming was also in process of becoming, so that we should not yet have arrived at what was in process of simple becoming but only at what was already in process of becoming in process of becoming. And this again was sometime in process of becoming, so that it is not yet in process of becoming in process of becoming. And since in an infinite series there is no first term, here there will be no first stage and therefore no following

36Transposed by Ross.
stage either. On this hypothesis, then, nothing can become or be moved or change.

Again, if a thing is capable of any particular motion, it is also capable of the corresponding contrary motion or the corresponding coming to rest, and a thing that is capable of becoming is also capable of perishing: consequently, what is in process of becoming in process of becoming is in process of perishing at the very moment when it is in process of becoming in process of becoming; since it cannot be in process of perishing when it is just beginning to become or after it has ceased to become; for that which is in process of perishing must be in existence.

Again, there must be matter underlying all processes of becoming and changing. What can this be in the present case? It is either the body or the soul that undergoes alteration: what is it that correspondingly becomes motion or becoming? And again what is the goal of their motion? It must be the motion or becoming of something from something to something else. But in what sense can this be so? For the becoming of learning cannot be learning: so neither can the becoming of becoming be becoming, nor can the becoming of any process be that process.

Again, since there are three kinds of motion, the subject and the goal of motion must be one or other of these, e.g. locomotion will have to be altered or to be locally moved.

To sum up, then, since everything that is moved is moved in one of three ways, either accidentally, or partially, or essentially, change can change only accidentally, as e.g. when a man who is being restored to health runs or learns: and accidental change we have earlier decided to leave out of account.

Since, then, motion can belong neither to substance nor to relation nor to agent and patient, it remains that there can be motion only in respect of quality, quantity, and place; for with each of these we have a pair of contraries. Motion in respect of quality let us call alteration, a general designation that is used to include both contraries; and by quality I do not here mean a property of substance (in that sense that which constitutes a specific distinction is a quality) but a passive quality in virtue of which a thing is said to be acted on or to be incapable of being acted on. Motion in respect of quantity has no name that includes both contraries, but it is called increase or decrease according as one or the other is designated: that is to say motion in the direction of complete magnitude is increase, motion in the contrary direction is decrease. Motion in respect of place has no name either general or particular; but we may designate it by the general name of locomotion, though strictly the term locomotion is applicable to things that change their place only when they have not the power to come to a stand, and to things that do not
move *themselves* locally.\(^{37}\)

Change within the same kind from a lesser to a greater or from a greater to a lesser degree is alteration; for it is motion either from a contrary or to a contrary, whether in an unqualified or in a qualified sense; for change to a lesser degree of a quality will be called change to the contrary of that quality, and change to a greater degree of a quality will be regarded as change from the contrary of that quality to the quality itself. It makes no difference whether the change be qualified or unqualified, except that in the former case the contraries will have to be contrary to one another only in a qualified sense; and a thing’s possessing a quality in a greater or in a lesser degree means the presence or absence in it of more or less of the opposite quality. It is now clear, then, that there are only these three kinds of motion.

The term ‘immovable’ we apply in the first place to that which is absolutely incapable of being moved (just as we correspondingly apply the term invisible to sound); in the second place to that which is moved with difficulty after a long time or whose movement is slow at the start—in fact, what we describe as hard to move; and in the third place to that which is naturally designed for and capable of motion, but is not in motion when, where, and as it naturally would be so. This last is the only kind of immovable thing of which I use the term ‘being at rest’; for rest is contrary to motion, so that rest will be privation of motion in that which is capable of admitting motion.

The foregoing remarks are sufficient to explain the essential nature of motion and rest, the number of kinds of change, and the different varieties of motion.

\(^{37}\) ‘*phora*’ (‘locomotion’) means, taken strictly, ‘being carried’.

\(^{38}\) Ross transposes 227a7-9 and 226b26-7 to follow 226b22.
no gap or only the smallest possible gap in the material—not in the time (for a
gap in the time does not prevent things moving continuously, while, on the other
hand, there is nothing to prevent the highest note sounding immediately after the
lowest) but in the material in which the motion takes place. This is manifestly true
not only in local changes but in every other kind as well. That is locally contrary
which is most distant in a straight line; for the shortest line is definitely limited,
and that which is definitely limited constitutes a measure.

A thing is in succession when it is after the beginning in position or in form
or in some other respect in which it is definitely so regarded, and when further
there is nothing of the same kind as itself between it and that to which it is in
succession, e.g. a line or lines if it is a line, a unit or units if it is a unit, a house
if it is a house (there is nothing to prevent something of a different kind being
between). For that which is in succession is in succession to a particular thing,
and is something posterior; for one is not in succession to two, nor is the first day
of the month to the second: in each case the latter is in succession to the former.

A thing that is in succession and touches is contiguous. The continuous is
a subdivision of the contiguous: things are called continuous when the touching
limits of each become one and the same and are, as the word implies, contained in
each other: continuity is impossible if these extremities are two. This definition
makes it plain that continuity belongs to things that naturally in virtue of their
mutual contact form a unity. And in whatever way that which holds them together
is one, so too will the whole be one, e.g. by a rivet or glue or contact or organic
union.

It is obvious that of these terms ‘in succession’ is primary; for that which
touches is necessarily in succession, but not everything that is in succession touches:
and so succession is a property of things prior in definition, e.g. numbers, while
contact is not. And if there is continuity there is necessarily contact, but if there is
contact, that alone does not imply continuity; for the extremities of things may be
together without necessarily being one; but they cannot be one without necessarily
being together. So natural union is last in coming to be; for the extremities must
necessarily come into contact if they are to be naturally united; but things that are
in contact are not all naturally united, while where there is no contact clearly there
is no natural union either. Hence, if as some say points and units have an indepen-
dent existence of their own, it is impossible for the two to be identical; for points
can touch while units can only be in succession. Moreover, there can always be
something between points (for all lines are intermediate between points), whereas
it is not necessary that there should be anything between units; for there is nothing
between the numbers one and two.
We have now said what it is to be together and apart, in contact, between and in succession, contiguous and continuous; and we have shown in what circumstances each of these terms is applicable.

§ 4 · There are many ways in which motion is said to be one; for we use the term ‘one’ in many ways.

Motion is one *generically* according to the different categories to which it may be assigned: thus any locomotion is one generically with any other locomotion, whereas alteration is different generically from locomotion.

Motion is one specifically when besides being one generically it also takes place in a species incapable of subdivision: e.g. colour has specific differences; therefore blackening and whitening differ specifically [but at all events every whitening will be specifically the same with every other whitening and every blackening with every other blackening].

But whiteness is not further subdivided by specific differences: hence any whitening is specifically one with any other whitening. Where it happens that the genus is at the same time a species, it is clear that the motion will then in a sense be one specifically though not in an unqualified sense: learning is an example of this, knowledge being on the one hand a species of apprehension and on the other hand a genus including the various knowledges. A difficulty, however, may be raised as to whether a motion is specifically one when the same thing changes from the same to the same, e.g. when one point changes again and again from a particular place to a particular place: if this motion is specifically one, circular motion will be the same as rectilinear motion, and rolling the same as walking. But is not this difficulty removed by the principle already laid down that if that in which the motion takes place is specifically different (as in the present instance the circular path is specifically different from the straight) the motion itself is also different? We have explained, then, what is meant by saying that motion is one generically or one specifically.

Motion is one in an unqualified sense when it is one essentially or numerically; and the following distinctions will make clear what this is. There are three textures in connexion with which we speak of motion—what, where, when. I mean that there must be something that is in motion, e.g. a man or gold, and it must be in motion in something, e.g. a place or an affection, and at some time (for all motion takes place in time). Of these three it is the thing in which the motion takes place that makes it one generically or specifically, it is the thing moved that makes the motion one in subject, and it is the time that makes it consecutive; but it

39 Ross excises this sentence as a doublet of 227b11.
is the three together that make it one without qualification—for that in which the
motion takes place (the species) must be one and incapable of subdivision, that
during which it takes place (the time) must be one and unintermittent, and that
which is in motion must be one—not in an accidental sense (i.e. it must be one as
the white that blackens is one or Coriscus who walks is one, not in the accidental
sense in which Coriscus and the white may be one), nor if it is done in common
(for there might be a case of two men being restored to health at the same time in
the same way, e.g. from inflammation of the eye, yet this motion is not one, but
only specifically one).

Suppose, however, that Socrates undergoes an alteration specifically the same
but at one time and again at another: in this case if it, is possible for that which
ceased to be again to come into being and remain numerically the same, then
this motion too will be one: otherwise it will be the same but not one. And
akin to this difficulty there is another; viz. is health one? and generally are the
states and affections in bodies one in essence although (as is clear) the things that
contain them are obviously in motion and in flux? Thus if a person’s health at
daybreak and at the present moment is one and the same, why should not this
health be numerically one with that which he recovers after an interval? The same
argument applies in each case, but with this difference: that if the states are two
then it follows simply from this fact that the actuality must also in point of number
be two (for only that which is numerically one can give rise to an actuality that
is numerically one); but if the state is one, this is not in itself enough to make us
regard the actuality also as one (for when a man ceases walking, the walking no
longer is, but it will again be if he begins to walk again). But, be this as it may, if
the health is one and the same, then it must be possible for that which is one and
the same to come to be and to cease to be many times. However, these difficulties
lie outside our present inquiry.

Since every motion is continuous, a motion that is one in an unqualified sense
must (since every motion is divisible) be continuous, and a continuous motion
must be one. There will not be continuity between any motion and any other any
more than there is between any two things chosen at random in any other sphere:
there can be continuity only when the extremities of the two things are one. Now
some things have no extremities at all; and the extremities of others differ specif-
cally although we give them the same name: how should e.g. the end of a line
and the end of walking touch or come to be one? Motions that are not the same
either specifically or generically may, it is true, be consecutive (e.g. a man may
run and then at once fall ill of a fever), and again, in the torch-race we have con-
secutive but not continuous locomotion; for according to our definition there can
be continuity only when the ends of the two things are one. Hence motions may be consecutive or successive in virtue of the time being continuous, but there can be continuity only in virtue of the motions themselves being continuous, that is when the end of each is one with the end of the other. Motion, therefore, that is in an unqualified sense continuous and one must be specifically the same, of one thing, and in one time. Unity is required in respect of time in order that there may be no interval of immobility, for where there is intermission of motion there must be rest, and a motion that includes intervals of rest will be not one but many, so that a motion that is interrupted by stationariness is not one or continuous, and it is so interrupted if there is an interval of time. And though of a motion that is not specifically one (even if it is not intermittent) the time is one, the motion is specifically different; for motion that is one must be specifically one, though motion that is specifically one is not necessarily one in an unqualified sense. We have now explained what we mean when we call a motion one without qualification.

Further, a motion is also said to be one generically, specifically, or essentially when it is complete, just as in other cases completeness and wholeness are characteristics of what is one; and sometimes a motion even if incomplete is said to be one, provided only that it is continuous.

And besides the cases already mentioned there is another in which a motion is said to be one, viz. when it is regular; for in a sense a motion that is irregular is not regarded as one, that title belonging rather to that which is regular, as a straight line is regular, the irregular being divisible. But the difference would seem to be one of degree. In every kind of motion we may have regularity or irregularity: thus there may be regular alteration, and locomotion in a regular path, e.g. in a circle or on a straight line, and it is the same with regard to increase and decrease. The difference that makes a motion irregular is sometimes to be found in its path: thus a motion cannot be regular if its path is an irregular magnitude, e.g. a broken line, a spiral, or any other magnitude that is not such that any part of it fits on to any other that may be chosen. Sometimes it is found neither in the subject nor in the time nor in the goal but in the manner of the motion; for in some cases the motion is differentiated by quickness and slowness: thus if its velocity is uniform a motion is regular, if not it is irregular. So quickness and slowness are not species of motion nor do they constitute specific differences of motion, because this distinction occurs in connexion with all the distinct species of motion. The same is true of heaviness and lightness when they refer to the same thing: e.g. they do not specifically distinguish earth from itself or fire from itself. Irregular motion, therefore, while in virtue of being continuous it is one, is so in a lesser degree, as is the case with locomotion in a broken line; and a lesser degree
of something always means an admixture of its contrary. And since every motion that is one can be both regular and irregular, motions that are consecutive but not specifically the same cannot be one and continuous; for how should a motion composed of alteration and locomotion be regular? If a motion is to be regular its parts ought to fit one another.

§ 5 · We have further to determine what motions are contrary to each other, and to determine similarly how it is with rest. And we have first to decide whether contrary motions are motions respectively from and to the same thing, e.g. a motion from health and a motion to health (where the opposition, it would seem, is of the same kind as that between coming to be and ceasing to be); or motions respectively from contraries, e.g. a motion from health and a motion from disease; or motions respectively to contraries, e.g. a motion to health and a motion to disease; or motions respectively from a contrary and to the opposite contrary, e.g. a motion from health and a motion to disease; or motions respectively from a contrary and from the opposite contrary, e.g. a motion from health to disease and a motion from disease to health; for motions must be contrary to one another in one or more of these ways, as there is no other way in which they can be opposed.

Now motions respectively from a contrary and to the opposite contrary, e.g. a motion from health and a motion to disease, are not contrary motions; for they are one and the same. (Yet their being is not the same, just as changing from health is different from changing to disease.) Nor are motions respectively from a contrary and from the opposite contrary contrary motions; for a motion from a contrary is at the same time a motion to a contrary or to an intermediate (of this, however, we shall speak later), but changing to a contrary rather than changing from a contrary would seem to be the cause of the contrariety of motions, the latter being the loss, the former the gain, of contrariness. Moreover, each several motion takes its name rather from the goal than from the starting-point of change, e.g. motion to health we call convalescence, motion to disease sickening. Thus we are left with motions respectively to contraries, and motions respectively to contraries from the opposite contraries. Now it would seem that motions to contraries are at the same time motions from contraries (though their being may not be the same; ‘to health’ is distinct, I mean, from ‘from disease’, and ‘from health’ from ‘to disease’).

Since then change differs from motion (motion being change from a particular subject to a particular subject), it follows that contrary motions are motions respectively from a contrary to the opposite contrary and from the latter to the former, e.g. a motion from health to disease and a motion from disease to health.
Moreover, the consideration of particular examples will also show what kinds of processes are generally recognized as contrary: thus falling ill is regarded as contrary to recovering one’s health, and being taught as contrary to being led into error by another; for their goals are contrary. (It is possible to acquire error, like knowledge, either by one’s own agency or by that of another.) Similarly we have upward locomotion and downward locomotion, which are contrary lengthwise, locomotion to the right and locomotion to the left, which are contrary breadthwise, and forward locomotion and backward locomotion, which too are contraries.

On the other hand, a process simply to a contrary (e.g. becoming white, where no starting-point is specified) is a change but not a motion. And in all cases of a thing that has no contrary we have as contraries change from and change to the same thing. Thus coming to be is contrary to ceasing to be, and losing to gaining. But these are changes and not motions. And wherever a pair of contraries admits of an intermediate, motions to that intermediate must be held to be in a sense motions to one or other of the contraries; for the intermediate serves as a contrary for the purposes of the motion, in whichever direction the change may be, e.g. grey in a motion from grey to white takes the place of black as starting-point, in a motion from white to grey it takes the place of black as goal, and in a motion from black to grey it takes the place of white as goal; for the middle is opposed in a sense to either of the extremes, as has been said above. Thus two motions are contrary to each other only when one is a motion from a contrary to the opposite contrary and the other is a motion from the latter to the former.

§ 6 · But since a motion appears to have contrary to it not only another motion but also a state of rest, we must determine how this is so. A motion has for its contrary in the unqualified sense another motion, but it also has for an opposite a state of rest (for rest is the privation of motion and the privation of anything may be called its contrary), and motion of one kind has for its opposite rest of that kind, e.g. local motion has local rest. This statement, however, needs further qualification: there remains the question, is the opposite of remaining at a particular place motion from or motion to that place? It is surely clear that since there are two subjects between which motion takes place, motion from one of these to its contrary has for its opposite remaining there, while the reverse motion has for its opposite remaining in the contrary. At the same time these two are also contrary to each other; for it would be absurd to suppose that there are contrary motions and not opposite states of rest. States of rest in contraries are opposed. To take an example, a state of rest in health is contrary to a state of rest in disease, and the motion to which it is contrary is that from health to disease. For it would be absurd
that its contrary motion should be that from disease to health, since motion to that in which a thing is at rest is rather a coming to rest, or at any rate the coming to rest is found to come into being simultaneously with the motion; and one of these two motions it must be. And rest in whiteness is not contrary to rest in health.

Of all things that have no contraries there are opposite changes (viz. change from the thing and change to the thing, e.g. change from being and change to being), but no motion. So, too, of such things there is no remaining though there is absence of change. Should there be a particular subject, absence of change in its being will be contrary to absence of change in its not-being. And here a difficulty may be raised: if what is not is not a particular something, what is it that is contrary to absence of change in a thing’s being? and is this absence of change a state of rest? If it is, then either it is not true that every state of rest is contrary to a motion or else coming to be and ceasing to be are motion. It is clear then that, since we exclude these from among motions, we must not say that this absence of change is a state of rest: we must say that it is similar to a state of rest and call it absence of change. And it will have for its contrary either nothing or absence of change in the thing’s not-being, or the ceasing to be of the thing; for such ceasing to be is change from it and the thing’s coming to be is change to it.

Again, a further difficulty may be raised. How is it that whereas in local change both remaining and moving may be natural or unnatural, in the other changes this is not so? e.g. alteration is not now natural and now unnatural; for convalescence is no more natural or unnatural than falling ill, whitening no more natural or unnatural than blackening; so, too, with increase and decrease: these are not contrary to each other in the sense that either of them is natural while the other is unnatural, nor is one increase contrary to another in this sense; and the same account may be given of becoming and perishing: it is not true that becoming is natural and perishing unnatural (for growing old is natural), nor do we observe one becoming to be natural and another unnatural. We answer that if what happens under violence is unnatural, then violent perishing is unnatural and as such contrary to natural perishing. Are there then also some becomings that are violent and not ordained, and are therefore contrary to natural becomings, and violent increases and decreases, e.g. the rapid growth to maturity of profligates and the rapid ripening of corn when not packed close in the earth? And how is it with alterations? Surely just the same: we may say that some alterations are violent while others are natural, e.g. patients alter naturally or unnaturally according as they throw off fevers on the critical days or not. But then we shall have perishings contrary to one another, not to becomings. And, why should not this in a sense be so? Thus it is so if one is pleasant and another painful: and so one perishing
will be contrary to another not in an unqualified sense, but in so far as one has this quality and the other that.

Generally, then, motions and states of rest exhibit contrariety in the manner described above, e.g. upward to downward, these being instances of local contrariety; and upward locomotion belongs naturally to fire and downward to earth, and the locomotions of the two are certainly contrary to each other. And again, fire moves up naturally and down unnaturally; and its natural motion is certainly contrary to its unnatural motion. Similarly with remaining: remaining above is contrary to motion from above downwards, and to earth this remaining comes unnaturally, this motion naturally. So the unnatural remaining of a thing is contrary to its natural motion, just as we find a similar contrariety in the motion of the same thing: one of its motions, the upward or the downward, is natural, the other unnatural.

Here, however, the question arises, has every state of rest that is not permanent a becoming, and is this becoming a coming to a standstill? If so, there must be a becoming of that which is at rest unnaturally, e.g. of earth at rest above; and therefore this earth during that time that it was being carried violently upward was coming to a standstill. But whereas the velocity of that which comes to a standstill seems always to increase, the velocity of that which is carried violently seems always to decrease: so it will be in a state of rest without having become so. Moreover coming to a standstill seems to be identical or at least concomitant with the locomotion of a thing to its proper place.

There is also another difficulty involved in the view that remaining in a particular place is contrary to motion from that place. For when a thing is moving from or discarding something, it still appears to have that which is being discarded, so that if this state of rest is contrary to the motion from here to its contrary, the contraries will simultaneously belong to the same thing. May we not say, however, that in so far as the thing is still stationary it is in a state of rest in a qualified sense, and in general that whenever a thing is in motion, part of it is at the starting-point while part is at the goal to which it is changing? And consequently a motion finds its contrary rather in another motion than in a state of rest.

With regard to motion and rest, then, we have now explained in what sense each of them is one and under what conditions they exhibit contrariety.

[With regard to coming to a standstill the question may be raised whether there is an opposite state of rest to unnatural as well as to natural motions. It would be absurd if this were not the case; for a thing may remain still merely under violence: thus we shall have a thing being in a non-permanent state of rest without having become so. But it is clear that it must be the case; for just as there is unnatural

230b10-230b20

230b21-230b27

230b28-231a2

231a3-231a4

231a5-231a17
motion, so, too, a thing may be in an unnatural state of rest. Further, some things have a natural and an unnatural motion, e.g. fire has a natural upward motion and an unnatural downward motion: is it, then, this or the motion of earth that is contrary? For the earth naturally moves downwards. Surely it is clear that both are contrary to it though not in the same sense: the natural motion of earth is contrary inasmuch as the motion of fire is also natural, whereas the upward motion of fire as being natural is contrary to the downward motion of fire as being unnatural. The same is true of the corresponding cases of remaining. But there would seem to be a sense in which a state of rest and a motion are opposites.]

40

40The final paragraph, which several MSS omit, is regarded as an alternative version of 230b10-28 by Ross and others.
§ 1 · Now if the terms ‘continuous’, ‘in contact’, and ‘in succession’ are understood as defined above—things being continuous if their extremities are one, in contact if their extremities are together, and in succession if there is nothing of their own kind intermediate between them—nothing that is continuous can be composed of indivisibles: e.g. a line cannot be composed of points, the line being continuous and the point indivisible. For the extremities of two points can neither be one (since of an indivisible there can be no extremity as distinct from some other part) nor together (since that which has no parts can have no extremity, the extremity and the thing of which it is the extremity being distinct).

Moreover, if that which is continuous is composed of points, these points must be either continuous or in contact with one another: and the same reasoning applies in the case of all indivisibles. Now for the reason given above they cannot be continuous; and one thing can be in contact with another only if whole is in contact with whole or part with part or part with whole. But since indivisibles have no parts, they must be in contact with one another as whole with whole. And if they are in contact with one another as whole with whole, they will not be continuous; for that which is continuous has distinct parts, and these parts into which it is divisible are different in this way, i.e. spatially separate.

Nor, again, can a point be in succession to a point or a now to a now in such a way that length can be composed of points or time of nows; for things are in succession if there is nothing of their own kind intermediate between them, whereas intermediate between points there is always a line and between nows a period of time.

Again, they could be divided into indivisibles, since each is divisible into the parts of which it is composed. But, as we saw, no continuous thing is divisible into things without parts. Nor can there be anything of any other kind between; for it would be either indivisible or divisible, and if it is divisible, divisible either into indivisibles or into divisibles that are always divisible, in which case it is continuous.

Moreover, it is plain that everything continuous is divisible into divisibles that are always divisible; for if it were divisible into indivisibles, we should have an indivisible in contact with an indivisible, since the extremities of things that are continuous with one another are one and are in contact.
The same reasoning applies equally to magnitude, to time, and to motion: either all of these are composed of indivisibles and are divisible into indivisibles, or none. This may be made clear as follows. If a magnitude is composed of indivisibles, the motion over that magnitude must be composed of corresponding indivisible motions: e.g. if the magnitude ABC is composed of the indivisibles A, B, C, each corresponding part of the motion DEF of Z over ABC is indivisible. Therefore, since where there is motion there must be something that is in motion, and where there is something in motion there must be motion, therefore the being-moved will also be composed of indivisibles. So Z traversed A when its motion was D, B when its motion was E, and C similarly when its motion was F. Now a thing that is in motion from one place to another cannot at the moment when it was in motion both be in motion and at the same time have completed its motion at the place to which it was in motion (e.g. if a man is walking to Thebes, he cannot be walking to Thebes and at the same time have completed his walk to Thebes); and, as we saw, Z traverses the partless section A in virtue of the presence of the motion D. Consequently, if Z actually passed through A after being in process of passing through, the motion must be divisible; for at the time when Z was passing through, it neither was at rest nor had completed its passage but was in an intermediate state; while if it is passing through and has completed its passage at the same time, then that which is walking will at the moment when it is walking have completed its walk and will be in the place to which it is walking; that is to say, it will have completed its motion at the place to which it is in motion. And if a thing is in motion over the whole ABC and its motion is DEF, and if it is not in motion at all over the partless section A but has completed its motion over it, then the motion will consist not of motions but of movings, and will take place by a thing’s having completed a motion without being in motion; for on this assumption it has completed its passage through A without passing through it. So it will be possible for a thing to have completed a walk without ever walking; for on this assumption it has completed a walk over a particular distance without walking over that distance. Since, then, everything must be either at rest or in motion, and it is therefore at rest in each of A, B, and C, it follows that a thing can be at the same time continuously at rest and in motion; for, as we saw, it is in motion over the whole ABC and at rest in any part (and consequently in the whole) of it. Moreover, if the indivisibles composing DEF are motions, it would be possible for a thing in spite of the presence in it of motion to be not in motion but at rest; while if they are not motions, it would be possible for motion to be composed of something other than motions.

And if length and motion are thus indivisible, it is similarly necessary that
time also be indivisible, that is to say be composed of indivisible nows; for if every motion is divisible and bodies of equal velocity will move less in less time, the time must also be divisible; and if the time in which a thing is carried over A is divisible, A must also be divisible.

§ 2. And since every magnitude is divisible into magnitudes—for we have shown that it is impossible for anything continuous to be composed of indivisible parts, and every magnitude is continuous—it necessarily follows that the quicker of two things traverses a greater magnitude in an equal time, an equal magnitude in less time, and a greater magnitude in less time, in conformity with the definition sometimes given of the quicker. Suppose that A is quicker than B. Now since of two things that which changes sooner is quicker, in the time FG, in which A has changed from C to D, B will not yet have arrived at D but will be short of it: so that in an equal time the quicker will pass over a greater magnitude. More than this, it will pass over a greater magnitude in less time; for in the time in which A has arrived at D, B being the slower has arrived, let us say, at E. Then since A has occupied the whole time FG in arriving at D, it will have arrived at H in less time than this, say FJ. Now the magnitude CH that A has passed over is greater than the magnitude CE, and the time FJ is less than the whole time FG; so that the quicker will pass over a greater magnitude in less time. And from this it is also clear that the quicker will pass over an equal magnitude in less time than the slower. For since it passes over the greater magnitude in less time than the slower, and (regarded by itself) passes over the greater in more time than the lesser—LM than LN—, the time PR in which it passes over LM will be more than the times PS in which it passes over LN: so that, the time PR being less than the time T in which the slower passes over LN, PS will also be less than T; for it is less than PR, and that which is less than something less is also itself less. Hence it will traverse an equal magnitude in less time. Again, since the motion of anything must always occupy either an equal time or less or more time, and since, whereas a thing is slower if its motion occupies more time and of equal velocity if its motion occupies an equal time, the quicker is neither of equal velocity nor slower, it follows that the motion of the quicker can occupy neither an equal time nor more time. It can only be, then, that it occupies less time, and thus it is necessary that the quicker will pass over an equal magnitude too in less time.

And since every motion is in time and a motion may occupy any time, and the motion of everything that is in motion may be either quicker or slower, both quicker motion and slower motion may occupy any time: and this being so, it necessarily follows that time also is continuous. By continuous I mean that which
is divisible into divisibles that are always divisible: and if we take this as the
definition of continuous, it follows necessarily that time is continuous. For since
it has been shown that the quicker will pass over an equal magnitude in less time
than the slower, suppose that A is quicker and B slower, and that the slower has
traversed the magnitude CD in the time FG. Now it is clear that the quicker will
traverse the same magnitude in less time than this: let us say in the time FH.
Again, since the quicker has passed over the whole CD in the time FH, the slower
will in the same time pass over CJ, say, which is less than CD. And since B, the
slower, has passed over CJ in the time FH, the quicker will pass over it in less time:
so that the time FH will again be divided. And if this is divided the magnitude
CJ will also be divided in the same ratio; and again, if the magnitude is divided,
the time will also be divided. And we can carry on this process for ever, taking
the slower after the quicker and the quicker after the slower, and using what has
been demonstrated; for the quicker will divide the time and the slower will divide
the length. If, then, this alternation always holds good, and at every turn involves
a division, it is evident that all time must be continuous. And at the same time it
is clear that all magnitude is also continuous; for the divisions of which time and
magnitude respectively are susceptible are the same and equal.

Moreover, the current arguments make it plain that, if time is continuous, mag-
nitude is continuous also, inasmuch as a thing passes over half a given magnitude
in half the time, and in general over a less magnitude in less time; for the divisions
of time and of magnitude will be the same. And if either is infinite, so is the other,
and the one is so in the same way as the other; i.e. if time is infinite in respect of
its extremities, length is also infinite in respect of its extremities; if time is infinite
in respect of divisibility, length is also infinite in respect of divisibility; and if time
is infinite in both respects, magnitude is also infinite in both respects.

Hence Zeno’s argument makes a false assumption in asserting that it is impos-
sible for a thing to pass over or severally to come in contact with infinite things
in a finite time. For there are two ways in which length and time and generally
anything continuous are called infinite: they are called so either in respect of di-
visibility or in respect of their extremities. So while a thing in a finite time cannot
come in contact with things quantitatively infinite, it can come in contact with
things infinite in respect of divisibility; for in this sense the time itself is also infi-
nite: and so we find that the time occupied by the passage over the infinite is not
a finite but an infinite time, and the contact with the infinites is made by means of
moments not finite but infinite in number.

The passage over the infinite, then, cannot occupy a finite time, and the pas-
sage over the finite cannot occupy an infinite time: if the time is infinite the mag-

233a13-233a21 233a21-233a31 233a32-233b16
magnitude must be infinite also, and if the magnitude is infinite, so also is the time. Let AB be a finite magnitude, and an infinite time C, and let a finite period CD of the time be taken. Now in this period the thing will pass over a certain segment of the magnitude: let BE be the segment that it has thus passed over. (This will be either an exact measure of AB or less or greater than an exact measure: it makes no difference which it is.) Then, since a magnitude equal to BE will always be passed over in an equal time, and BE measures the whole magnitude, the whole time occupied in passing over AB will be finite; for it will be divisible into periods equal in number to the segments into which the magnitude is divisible. Moreover, if it is the case that infinite time is not occupied in passing over every magnitude, but it is possible to pass over some magnitude, say BE, in a finite time, and if this measures the whole, and if an equal magnitude is passed over in an equal time, then it follows that the time too is finite. That infinite time will not be occupied in passing over BE is evident if the time be taken as limited in one direction; for as the part will be passed over in less time than the whole, this must be finite, the limit in one direction being given. The same demonstration will also show the falsity of the assumption that infinite length can be traversed in a finite time. It is evident, then, from what has been said that neither a line nor a surface nor in fact anything continuous can be indivisible.

This conclusion follows not only from the present argument but from the consideration that the opposite assumption implies the divisibility of the indivisible. For since the distinction of quicker and slower may apply to motions occupying any period of time and in an equal time the quicker passes over a greater length, it may happen that it will pass over a length twice, or one and a half times, as great as that passed over by the slower; for their respective velocities may stand to one another in this proportion. Suppose, then, that the quicker has in the same time been carried over a length one and a half times as great, and that the respective magnitudes are divided, that of the quicker into three indivisibles, AB, BC, CD, and that of the slower into two, EF, FG. Then the time may also be divided into three indivisibles; for an equal magnitude will be passed over in an equal time. Suppose then that it is thus divided into KL, LM, MN. Again, since in the same time the slower has been carried over EZ, ZH, the time may also be divided into two. Thus the indivisible will be divisible, and that which has no parts will be passed over not in an indivisible but in a greater time. It is evident, therefore, that nothing continuous is without parts.

§ 3 · Necessarily, too, the now—the now so-called not derivatively but in its own right and primarily—is indivisible and is inherent in all time. For the now is
an extremity of the past (no part of the future being on this side of it), and again of the future (no part of the past being on that side of it): it is, we maintain, a limit of both. And if it is proved that it is of this character and one and the same, it will at once be evident also that it is indivisible.

Now the now that is the extremity of both times must be one and the same; for if each extremity were different, the one could not be in succession to the other, because nothing continuous can be composed of things having no parts; and if the one is apart from the other, there will be time between them, because everything continuous is such that there is something between its limits described by the same name as itself. But if the intermediate thing is time, it will be divisible; for all time has been shown to be divisible. Thus on this assumption the now is divisible. But if the now is divisible, there will be part of the past in the future and part of the future in the past; for past time will be marked off from future time at the actual point of division. Also the now will be a now not in its own right but derivatively, for the division will not be a division in its own right. Furthermore, there will be a part of the now that is past and a part that is future, and it will not always be the same part that is past or future. Nor, then, will the now be the same; for the time may be divided at many points. If, therefore, the now cannot possibly have these characteristics, it follows that it must be the same now that belongs to each of the two times. But if it is the same, it is evident that it is also indivisible; for if it is divisible it will be involved in the same implications as before. It is clear, then, from what has been said that time contains something indivisible, and this is what we call the now.

We will now show that nothing can be in motion in a now. For if this is possible, there can be both quicker and slower motion. Suppose then that in the now N the quicker has traversed the distance AB. That being so, the slower will in the same now have traversed a distance less than AB, say AC. But since the slower will have occupied the whole now in traversing AC, the quicker will occupy less than this in traversing it. Thus we shall have a division of the now, whereas we found it to be indivisible. It is impossible, therefore, for anything to be in motion in a now.

Nor can anything be at rest; for we assert that, that only can be at rest which is of such a nature to be in motion but is not in motion when, where, or as it would naturally be so; since, therefore, nothing is of such a nature as to be in motion in a now, it is clear that nothing can be at rest either.

Moreover, inasmuch as it is the same now that belongs to both the times, and it is possible for a thing to be in motion throughout one time and to be at rest throughout the other, and that which is in motion or at rest for the whole of a time
will be in motion or at rest in any part of it in which it is of such a nature as to be in motion or at rest: it will follow that the same thing can at the same time be at rest and in motion; for both the times have the same extremity, viz. the now.

Again, we say that a thing is at rest if its condition in whole and in part is uniform now and before; but the now contains no before; consequently, there can be no rest in it.

It follows then that the motion of that which is in motion and the rest of that which is at rest must occupy time.

§ 4 · Further, everything that changes must be divisible. For since every change is from something to something, and when a thing is at the point to which it was changing it is no longer changing, and when both it itself and all its parts are at the point from which it was changing it is not changing (for that which is in whole and in part in an unvarying condition is not in a state of change); it follows, therefore, that part of that which is changing must be at the starting-point and part at the goal; for it cannot be in both or in neither. (Here by ‘goal of change’ I mean that which comes first in the process of change: e.g. in a process of change from white the goal in question will be grey, not black; for it is not necessary that that which is changing should be at either of the extremes.) It is evident, therefore, that everything that changes must be divisible.

Now motion is divisible in two ways—in virtue of the time that it occupies, according to the motions of the parts of that which is in motion: e.g. if the whole AC is in motion, there will be a motion of AB and a motion of BC. Let DE be the motion of the part AB and EF the motion of the part BC. Then the whole DF must be the motion of AC; for it must constitute its motion inasmuch as they severally constitute the motions of each of its parts. But the motion of a thing can never be constituted by the motion of something else; consequently the whole motion is the motion of the whole magnitude.

Again, if there is a motion of the whole other than DF, say HI, the motion of

\[41\] Retaining \(ou \) (MSS) for Ross’s \(oupo \).
each of the parts may be subtracted from it; and these motions will be equal to DE, EF; for the motion of that which is one must be one. So if the whole motion HI may be divided into the motions of the parts, HI will be equal to DF; if on the other hand there is any remainder, say KI, this will be a motion of nothing; for it can be the motion neither of the whole nor of the parts (as the motion of that which is one must be one) nor of anything else (for a motion that is continuous must be the motion of things that are continuous). And the same result follows if the division of HI reveals a surplus. Consequently, if this is impossible, the whole motion must be the same as and equal to DF.

This then is what is meant by the division of motion according to the motions of the parts; and it must be applicable to everything that is divisible into parts.

Motion is also susceptible of another kind of division, that according to time. For since all motion is in time and all time is divisible, and in less time the motion is less, it follows that every motion must be divisible according to time. And since everything that is in motion is in motion in a certain sphere and for a certain time and has a motion belonging to it, it follows that the time, the motion, the being-in-motion, the thing that is in motion, and the sphere of the motion must all be susceptible of the same divisions (though spheres of motion are not all divisible in a like manner: thus place is essentially, quality accidentally divisible). For suppose that A is the time occupied by the motion B. Then if all the time has been occupied by the whole motion, it will take less of the motion to occupy half the time, less again to occupy a further subdivision of the time, and so on always. Similarly, if the motion is divisible, the time too will be divisible; for if the whole motion occupies all the time half the motion will occupy half the time, and less of the motion again will occupy less of the time.

In the same way the being-in-motion will also be divisible. For let C be the whole being-in-motion. Then the being-in-motion that corresponds to half the motion will be less than the whole being-in-motion, that which corresponds to a quarter of the motion will be less again, and so on always. Moreover by setting out the being-in-motion corresponding to each of the two motions DC (say) and CE, we may argue that the whole being-in-motion will correspond to the whole motion (for if something else did, there would be more than one being-in-motion corresponding to the same motion), the argument being the same as that whereby we showed that the motion of a thing is divisible into the motions of the parts of the thing; for if we take the being-in-motion corresponding to each of the two motions, we shall see that the whole is continuous.

The same reasoning will show the divisibility of the length, and in fact of everything that forms a sphere of change (though some of these are only accidentally
divisible because that which changes is so); for the division of one term will involve the division of all. So, too, in the matter of their being finite or infinite, they will all alike be either the one or the other. And we now see that in most cases the fact that all the terms are divisible or infinite is a direct consequence of the fact that the thing that changes is divisible or infinite; for the attributes ‘divisible’ and ‘infinite’ belong in the first instance to the thing that changes. That divisibility does so we have already shown; that infinity does so will be made clear in what follows.

§ 5 · Since everything that changes changes from something to something, that which has changed must at the moment when it has first changed be in that to which it has changed. For that which changes retires from or leaves that from which it changes; and leaving, if not identical with changing, is at any rate a consequence of it. And if leaving is a consequence of changing, having left is a consequence of having changed; for there is a like relation between the two in each case.

One kind of change, then, being change in a relation of contradiction, where a thing has changed from not-being to being it has left not-being. Therefore it will be in being; for everything must either be or not be. It is evident, then, that in contradictory change that which has changed must be in that to which it has changed. And if this is true in this kind of change, it will be true in all other kinds as well; for what holds good in the case of one will hold good likewise in the case of the rest.

Moreover, if we take each kind of change separately, the truth of our conclusion will be equally evident, on the ground that that which has changed must be somewhere or in something. For, since it has left that from which it has changed and must be somewhere, it must be either in that to which it has changed or in something else. If, then, that which has changed to B is in something other than B, say C, it must again be changing from C to B; for B was not assumed to be contiguous, and change is continuous. Thus we have the result that the thing that has changed, at the moment when it has changed, is changing to that to which it has changed, which is impossible: that which has changed, therefore, must be in that to which it has changed. So it is evident likewise that that which has come to be, at the moment when it has come to be, will be, and that which has ceased to be will not be; for what we have said applies universally to every kind of change, and its truth is most obvious in the case of contradictory change. It is clear, then, that that which has changed, at the moment when it has first changed, is in that to which it has changed.
Now the time primarily in which that which has changed has changed must be indivisible, where by ‘primary’ I mean a thing’s being such-and-such not because some part of it is such-and-such. For let AC be divisible, and let it be divided at B. If then it has changed in AB or again in BC, AC cannot be the primary thing in which it has changed. If, on the other hand, it has been changing in both AB and BC (for it must either have changed or be changing in each of them), it must have been changing in the whole too; but our assumption was that it had changed in that. The same argument applies if we suppose that it changes in one part and has changed in the other; for then we shall have something prior to what is primary. So that in which a thing has changed must be indivisible. It is also evident, therefore, that that in which that which has ceased to be has ceased to be and that in which that which has come to be has come to be are indivisible.

But there are two ways of talking about that primarily in which something has changed. On the one hand it may mean the primary time at which the change is completed—the moment when it is correct to say ‘it has changed’; on the other hand it may mean the primary time at which it began to change. Now the primary time that has reference to the end of the change is something really existent; for a change may be completed, and there is such a thing as an end of change, which we have in fact shown to be indivisible because it is a limit. But that which has reference to the beginning is not existent at all; for there is no such thing as a beginning of change, nor any primary time at which it was changing. For suppose that AD is such a primary time. Then it cannot be indivisible; for, if it were, the nows will be consecutive. Again, if the changing thing is at rest in the whole time CA (for we may suppose that it is at rest), it is at rest in A also; so if AC is without parts, it will simultaneously be at rest and have changed; for it is at rest in A and has changed in D. Since then AD is not without parts, it must be divisible, and the changing thing must have changed in every part of it (for if it has changed in neither of the two parts into which AD is divided, it has not changed in the whole either; if, on the other hand, it is changing in both parts, it is likewise changing in the whole; and if, again, it has changed in one of the two parts, the whole is not the primary time in which it has changed: it must therefore have changed in every part). It is evident, then, that there is no primary time in which it has changed; for the divisions are infinite.

So, too, of that which has changed there is no primary part that has changed. For suppose that of DE the primary part that has changed is DF (everything that changes having been shown to be divisible); and let HI be the time in which DF...
Aristotle

has changed. If, then, in the whole time DF has changed, in half the time there will be a part that has changed, less than and prior to DF; and again there will be another part prior to this, and yet another, and so on always. Thus of that which changes there cannot be any primary part that has changed. It is evident, then, from what has been said, that neither of that which changes nor of the time in which it changes is there any primary part.

With regard, however, to the actual subject of change—that is to say that in respect of which a thing changes—there is a difference to be observed. For in a process of change we may distinguish three terms—that which changes, that in which it changes, and that to which it changes, e.g. the man, the time, and the pallor. Of these the man and the time are divisible; but with the pallor it is otherwise (though they are all divisible accidentally; for that of which the pallor or any other quality is an accident is divisible). For things which are divisible in their own right and not accidentally have no primary part. Take the case of magnitudes: let AB be a magnitude, and suppose that it has moved from B to a primary C. Then if BC is taken to be indivisible, two things without parts will have to be contiguous; if on the other hand it is taken to be divisible, there will be something prior to C to which the magnitude has changed, and something else again prior to that, and so on to always, because the process of division never gives out. Thus there can be no primary thing to which a thing has changed. And if we take the case of quantitative change, we shall get a like result; for here too the change is in something continuous. It is evident, then, that only in qualitative motion can there be anything indivisible in its own right.

§ 6 · Now everything that changes changes in time, and that in two senses may be the primary time, or it may be derivative, as e.g. when we say that a thing changes in a particular year because it changes in a particular day. That being so, that which changes must be changing in any part of the primary time in which it changes. This is clear from our definition of primary, in which the word is said to express just this; it may also, however, be made evident by the following argument. Let TR be the primary time in which that which is in motion is in motion; and (as all time is divisible) let it be divided at K. Now in the time TK it either is in motion or is not in motion, and the same is likewise true of the time TR. Then if it is in motion in neither of the two parts, it will be at rest in the whole; for it is impossible that it should be in motion in a time in no part of which it is in motion. If on the other hand it is in motion in only one of the two parts of the time, TR cannot be the primary time in which it is in motion; for its motion will have reference to a time other than TR. It must, then, be moving in any part
And now that this has been proved, it is evident that everything that is in motion must have been in motion before. For if that which is in motion has traversed the distance KL in the primary time TR, in half the time a thing that is in motion with equal velocity and began its motion at the same time will have traversed half the distance. But if the thing whose velocity is equal has traversed a certain distance in the same time, the original thing that is in motion must have traversed the same distance. Hence that which is in motion must have been in motion before.

Again, if by taking the extreme now of the time—for it is the now that defines the time, and time is that which is intermediate between nows—we are enabled to say that motion has taken place in the whole time TR or in fact in any period of it, motion may likewise be said to have taken place in every other such period. But half the time finds an extreme in the point of division. Therefore motion will have taken place in half the time and in fact in any part of it; for as soon as any division is made there is always a time defined by nows. If, then, all time is divisible, and that which is intermediate between nows is time, everything that is changing must have completed an infinite number of changes.

Again, since a thing that changes continuously and has not perished or ceased from its change must either be changing or have changed in any part of the time of its change, and since it cannot be changing in a now, it follows that it must have changed at every now in the time: consequently, since the nows are infinite in number, everything that is changing must have completed an infinite number of changes.

And not only must that which is changing have changed, but that which has changed must also previously have been changing, since everything that has changed from something to something has changed in a period of time. For suppose that a thing has changed from A to B in a now. Now the now in which it has changed cannot be the same as that in which it is at A (since in that case it would be in A and B at once); for we have shown above that that which has changed, when it has changed, is not in that from which it has changed. If, on the other hand, it is a different now, there will be a period of time intermediate between the two; for, as we saw, nows are not consecutive. Since, then, it has changed in a period of time, and all time is divisible, in half the time it will have completed another change, in a quarter another, and so on always: consequently it must have previously been changing.

Moreover, the truth of what has been said is more evident in the case of magnitude, because the magnitude over which what is changing is continuous. For suppose that a thing has changed from C to D. Then if CD is indivisible, two
things without parts will be consecutive. But since this is impossible, that which is intermediate between them must be a magnitude and divisible into an infinite number of segments: consequently, it has previously been changing to those segments. Everything that has changed, therefore, must previously have been changing; for the same demonstration also holds good of change with respect to what is not continuous, changes, that is to say, between contraries and between contradictories. In such cases we have only to take the time in which a thing has changed and again apply the same reasoning. So that which has changed must have been changing and that which is changing must have changed, and a process of change is preceded by a completion of change and a completion by a process; and we can never take any first stage. The cause of this is that no two things without parts can be contiguous; for the division is infinite, as in the case of lines which are increasing and decreasing.

So it is evident also that that which has become must previously have been becoming, and that which is becoming must previously have become, everything (that is) that is divisible and continuous; though it is not always the actual thing that is becoming of which this is true: sometimes it is something else, that is to say, some part of the thing in question, e.g. the foundation-stone of a house. So, too, in the case of that which is perishing and that which has perished; for that which becomes and that which perishes must contain an element of infiniteness since they are continuous things; and so a thing cannot be becoming without having become or have become without having been becoming. So, too, in the case of perishing and having perished: perishing must be preceded by having perished, and having perished by perishing. It is evident, then, that that which has become must previously have been becoming, and that which is becoming must previously have become; for all magnitudes and all periods of time are always divisible. Consequently, whatever a thing may be in, it is not in it primarily.

§ 7 · Now since the motion of everything that is in motion occupies a period of time, and a greater magnitude is traversed in a longer time, it is impossible that a thing should undergo a finite motion in an infinite time, if this is understood to mean not that the same motion or a part of it is continually repeated, but that the whole is occupied by the whole. In all cases where a thing is in motion with uniform velocity it is clear that the finite magnitude is traversed in a finite time. For if we take a part of the motion which shall be a measure of the whole, the whole motion is completed in as many equal periods of the time as there are parts of the motion. Consequently, since these parts are finite, both in size individually and in number collectively, the whole time must also be finite; for it will be a multiple
equal to the time occupied in completing the part multiplied by the number of the parts.

But it makes no difference even if the velocity is not uniform. For let us suppose that the line AB represents a finite stretch over which a thing has been moved in the infinite time, and let CD be the infinite time. Now if one part of the stretch must have been traversed before another part (this is clear, that in the earlier and in the later part of the time a different part of the stretch has been traversed; for as the time lengthens a different part of the motion will always be completed in it, whether it changes with uniform velocity or not; and whether the motion increases or diminishes or remains stationary this is none the less so), let us then take AE a part of the interval AB which shall be a measure of AB. Now this occupies a certain period of the infinite time: it cannot itself occupy an infinite time, for that is occupied by the whole AB. And if again I take another part equal to AE, that also must occupy a finite time in consequence of the same assumption. And if I go on taking parts in this way, since there is no part which will be a measure of the infinite time (for the infinite cannot be composed of finite parts whether equal or unequal, because there must be some unity which will be a measure of things finite in multitude or in magnitude, which, whether they are equal or unequal, are none the less limited in magnitude), and the finite interval is measured by the quantities AE: consequently the motion AB must be accomplished in a finite time. (It is the same with coming to rest.) And so it is impossible for one and the same thing to be always in process of becoming or of perishing.

The same reasoning will prove that in a finite time there cannot be an infinite extent of motion or of coming to rest, whether the motion is regular or irregular. For if we take a part which shall be a measure of the whole time, in this part a certain fraction, not the whole, of the magnitude will be traversed, because the whole occupies all the time. Again, in another equal part of the time another part of the magnitude will be traversed; and similarly in each part of the time that we take, whether equal or unequal to the part originally taken. It makes no difference whether the parts are equal or not, if only each is finite; for it is clear that while the time is exhausted, the infinite magnitude will not be exhausted, since the process of subtraction is finite both in respect of the quantity subtracted and of the number of times a subtraction is made. Consequently the infinite magnitude will not be traversed in a finite time; and it makes no difference whether the magnitude is infinite in only one direction or in both; for the same reasoning will hold good.

This having been proved, it is evident that neither can a finite magnitude traverse an infinite magnitude in a finite time, the reason being the same as that given above: in part of the time it will traverse a finite magnitude and in each several
part likewise, so that in the whole time it will traverse a finite magnitude.

And since a finite magnitude will not traverse an infinite in a finite time, it is clear that neither will an infinite traverse a finite. For if the infinite could traverse the finite, the finite could traverse the infinite; for it makes no difference which of the two is the thing in motion: either case involves the traversing of the infinite by the finite. For when the infinite magnitude A is in motion a part of it, say CD, will occupy the finite B, and then another, and then another, and so on to always. Thus the two results will coincide: the infinite will have completed a motion over the finite and the finite will have traversed the infinite; for it would seem to be impossible for the motion of the infinite over the finite to occur in any way other than by the finite traversing the infinite either by locomotion over it or by measuring it. Therefore, since this is impossible, the infinite cannot traverse the finite.

Nor again will the infinite traverse the infinite in a finite time. Otherwise it would also traverse the finite, for the infinite includes the finite. We can further prove this in the same way by taking the time as our starting-point.

Since, then, in a finite time neither will the finite traverse the infinite, nor the infinite the finite, it is evident also that in a finite time there cannot be infinite motion; for what difference does it make whether we take the motion or the magnitude to be infinite? If either of the two is infinite, the other must be so too; for all locomotion is in place.

§ 8 · Since everything to which motion or rest is natural is in motion or at rest in the natural time, place, and manner, that which is coming to a stand, when it is coming to a stand, must be in motion; for if it is not in motion it must be at rest; but that which is at rest cannot be coming to rest. From this it evidently follows that coming to a stand must occupy a period of time; for the motion of that which is in motion occupies a period of time, and that which is coming to a stand has been shown to be in motion: consequently coming to a stand must occupy a period of time.

Again, since the terms ‘quicker’ and ‘slower’ are used only of that which occupies a period of time, and the process of coming to a stand may be quicker or slower, the same conclusion follows.

And that which is coming to a stand must be coming to a stand in any part of the primary time in which it is coming to a stand. For if it is coming to a stand in neither of two parts into which the time may be divided, it cannot be coming to a stand in the whole time, with the result that that which is coming to a stand will not be coming to a stand. If on the other hand it is coming to a stand in only one
of the two parts, the whole cannot be the primary time in which it is coming to a
stand; for it is coming to a stand in this derivatively, as we said before in the case
of things in motion.

And just as there is no primary time in which that which is in motion is in
motion, so too there is no primary time in which that which is coming to a stand
is coming to a stand, there being no primary stage either of being in motion or
of coming to a stand. For let AB be the primary time in which a thing is coming
to a stand. Now AB cannot be without parts; for there cannot be motion in that
which is without parts, because a moving thing would have moved for a part of
it, and that which is coming to a stand has been shown to be in motion. But since
AB is divisible, the thing is coming to a stand in every one of its parts; for we
have shown above that it is coming to a stand in every one of the parts in which
it is primarily coming to a stand. Since, then, that in which primarily a thing is
coming to a stand must be a period of time and not something indivisible, and
since all time is infinitely divisible, there cannot be anything in which primarily it
is coming to a stand.

Nor again can there be a primary time at which a thing at rest was resting; for
it cannot have been resting in that which has no parts, because there cannot be
motion in that which is indivisible, and that in which rest takes place is the same
as that in which motion takes place (for we said that rest occurs if a thing which
naturally moves is not moving when and at a time in which motion would be
natural to it). Again, we say that a thing rests when it is now in the same state as it
as earlier, judging rest not by any one point but by at least two: consequently
that in which a thing is at rest cannot be without parts. Since, then, it is divisible,
it must be a period of time, and the thing must be at rest in every one of its parts,
as may be shown by the same method as that used above.

So there can be no primary time; and the reason is that rest and motion are
always in time, and there is no primary time—nor magnitude nor in fact anything
continuous; for everything continuous is divisible into an infinite number of parts.

And since everything that is in motion is in motion in time and changes from
something to something, in the time in which in its own right (i.e. not merely in
a part of the time) something moves, it is impossible that that which is in motion
should be over against some particular thing primarily. For if a thing—itself and
each of its parts—occupies the same space for a definite period of time, it is at
rest; for it is in just these circumstances that we use the term ‘being at rest’—
when at one now after another it can be said with truth that a thing, itself and its
parts, occupies the same space. So if this is being at rest it is impossible for that
which is changing to be as a whole, at the time when it is primarily changing, over
against any particular thing (for the whole period of time is divisible), so that in
one part of it after another it will be true to say that the thing, itself and its parts,
occupies the same space. If this is not so and the aforesaid proposition is true
only at a single now, then the thing will be over against a particular thing not for
any period of time but only at a moment that limits the time. It is true that at any
now it is always over against something; but it is not at rest; for at a now it is not
possible for anything to be either in motion or at rest. So while it is true to say that
that which is in motion is at a now not in motion and is opposite some particular
thing, it cannot in a period of time be at rest over against anything; for that would
involve the conclusion that that which is in locomotion is at rest.

§ 9 · Zeno’s reasoning, however, is fallacious, when he says that if everything
when it occupies an equal space is at rest, and if that which is in locomotion is
always in a now, the flying arrow is therefore motionless. This is false; for time is
not composed of indivisible nows any more than any other magnitude is composed
of indivisibles.

Zeno’s arguments about motion, which cause so much trouble to those who
try to answer them, are four in number. The first asserts the non-existence of
motion on the ground that that which is in locomotion must arrive at the half-way
stage before it arrives at the goal. This we have discussed above.43

The second is the so-called Achilles, and it amounts to this, that in a race
the quickest runner can never overtake the slowest, since the pursuer must first
reach the point whence the pursued started, so that the slower must always hold a
lead. This argument is the same in principle as that which depends on bisection,
though it differs from it in that the spaces with which we have successively to
deal are not divided into halves. The result of the argument is that the slower is
not overtaken; but it proceeds along the same lines as the bisection-argument (for
in both a division of the space in a certain way leads to the result that the goal
is not reached, though the Achilles goes further in that it affirms that even the
runner most famed for his speed must fail in his pursuit of the slowest), so that
the solution too must be the same. And the claim that that which holds a lead is
never overtaken is false: it is not overtaken while it holds a lead; but it is overtaken
nevertheless if it is granted that it traverses the finite distance. These then are two
of his arguments.

The third is that already given above, to the effect that the flying arrow is at
rest, which result follows from the assumption that time is composed of moments:
if this assumption is not granted, the conclusion will not follow.

43 See 233a21ff.
The fourth argument is that concerning equal bodies which move alongside equal bodies in the stadium from opposite directions—the ones from the end of the stadium, the others from the middle—at equal speeds, in which he thinks it follows that half the time is equal to its double. The fallacy consists in requiring that a body travelling at an equal speed travels for an equal time past a moving body and a body of the same size at rest. That is false. E.g. let the stationary equal bodies be AA; let BB be those starting from the middle of the A’s\(^{44}\) (equal in number and in magnitude to them); and let CC be those starting from the end (equal in number and magnitude to them, and equal in speed to the B’s). Now it follows that the first B and the first C are at the end at the same time, as they are moving past one another. And it follows that the C has passed all the A’s\(^{45}\) and the B half; so that the time is half, for each of the two is alongside each for an equal time. And at the same time it follows that the first B has passed all the C’s. For at the same time the first B and the first C will be at opposite ends,* being an equal time alongside each of the B’s as alongside each of the A’s, as he says,*\(^{46}\) because both are an equal time alongside the A’s. That is the argument, and it rests on the stated falsity.

Nor in reference to contradictory change shall we find anything impossible—e.g. if it is argued that if a thing is changing from not-white to white, and is in neither condition, then it will be neither white nor not-white; for the fact that it is not wholly in either condition will not preclude us from calling it white or not-white. We call a thing white or not-white not because it is wholly either one or the other, but because most of its parts or the most essential parts of it are so: not being in a certain condition is different from not being wholly in that condition. So, too, in the case of being and not-being and all other conditions which stand in a contradictory relation: while the changing thing must of necessity be in one of the two opposites, it is never wholly in either.

Again, in the case of circles and spheres and everything that moves within its own dimensions, it is argued that they will be at rest, on the ground that such things, themselves and their parts, will occupy the same position for a period of time, and that therefore they will be at once at rest and in motion. For, first, the parts do not occupy the same place for any period of time; and secondly, the whole also is always changing to a different position; for the circumference from A is not the same as that from B or C or any other point except accidentally, as a musical

\(^{44}\)Reading *tou mesou ton A* (*tou mesou*, Ross).

\(^{45}\)Reading *panta ta A* (*panta*, Ross).

\(^{46}\)Ross excises the clause marked *. . . .*.
man is the same as a man. Thus one is always changing into another, and the thing will never be at rest. And it is the same with the sphere and everything else which moves within its own dimensions.

§ 10 · That having been demonstrated, we next assert that that which is without parts cannot be in motion except accidentally, i.e. in so far as the body or the magnitude to which it belongs is in motion, just as that which is in a boat may be in motion in consequence of the locomotion of the boat, or a part may be in motion in virtue of the motion of the whole. (By ‘that which is without parts’ I mean that which is quantitatively indivisible.) For parts have different motions—those in virtue of themselves, and those in virtue of the motion of the whole. The distinction may be seen most clearly in the case of a sphere, in which the velocities of the parts near the centre and of those on the surface are different from one another and from that of the whole; this implies that there is not one motion. As we have said, then, that which is without parts can be in motion in the sense in which a man sitting in a boat is in motion when the boat is travelling, but it cannot be in motion of itself. For suppose that it is changing from AB to BC—either from one magnitude to another, or from one form to another, or from some state to its contradictory—and let D be the primary time in which it undergoes the change. Then in the time in which it is changing it must be either in AB or in BC or partly in one and partly in the other; for this, as we saw, is true of everything that is changing. Now it cannot be partly in each of the two; for then it would be divisible into parts. Nor again can it be in BC; for then it will have changed, whereas the assumption is that it is changing. It remains, then, that in the time in which it is changing, it is in AB. That being so, it will be at rest; for, as we saw, to be in the same condition for a period of time is to be at rest. So it is not possible for that which has no parts to be in motion or to change in any way; for only one condition could have made it possible for it to have motion, viz. that time should be composed of nows, in which case at any now it would have moved or changed, so that it would never be in motion, but would always have been moving. But this we have already shown to be impossible: time is not composed of nows, just as a line is not composed of points, and motion is not composed of movings; for this theory simply makes motion consist of indivisibles in exactly the same way as time is made to consist of nows or a length of points.

Again, it may be shown in the following way that there can be no motion of a point or of any other indivisible. That which is in motion can never traverse a space greater than itself without first traversing a space equal to or less than itself. That being so, it is evident that the point also must first traverse a space equal to or
less than itself. But since it is indivisible, it is impossible for it to traverse a lesser space first: so it will have to traverse a distance equal to itself. Thus the line will be composed of points; for the point, as it continually traverses a distance equal to itself, will be a measure of the whole line. But since this is impossible, it is likewise impossible for the indivisible to be in motion.

Again, since motion is always in time and never in a now, and all time is divisible, for everything that is in motion there must be a time less than that in which it traverses a distance as great as itself. For that in which it is in motion will be a time, because all motion is in time; and all time has been shown above to be divisible. Therefore, if a point is in motion, there must be a time less than that in which it has itself traversed its own length. But this is impossible; for in less time it must traverse less distance, and thus the indivisible will be divisible into something less, just as the time is so divisible; for that which is without parts and indivisible could be in motion only if it were possible to move in an indivisible now; for in the two questions—that of motion in a now and that of motion of something indivisible—the same principle is involved.

No change is infinite; for every change, whether between contradictories or between contraries, is a change from something to something. Thus in contradictory changes the positive or the negative is the limit, e.g. being is the limit of coming to be and not-being is the limit of ceasing to be; and in contrary changes the particular contraries are the limits, since these are the extreme points of the change, and consequently of every alteration; for alteration is always dependent upon some contraries. Similarly for increase and decrease: the limit of increase is to be found in the complete magnitude proper to the peculiar nature of the thing, while the limit of decrease is the loss of such magnitude. Locomotion, it is true, we cannot show to be finite in this way, since it is not always between contraries. But since that which cannot be cut (in the sense that it is not possible that it should be cut, the term ‘cannot’ being used in several ways)—since it is not possible that that which in this sense cannot be cut should be being cut, and generally that that which cannot come to be should be coming to be, it follows that it is not possible that that which cannot have changed should be changing to that to which it cannot have changed. If, then, that which is in locomotion is to be changing to something, it must be capable of having changed. Consequently its motion is not infinite, and it will not be in locomotion over an infinite distance; for it cannot have traversed such a distance.

It is evident, then, that a change cannot be infinite in the sense that it is not defined by limits. But it remains to be considered whether it is possible in the sense that one and the same change may be infinite in respect of the time which
it occupies. If it is not one change, it would seem that there is nothing to prevent its being infinite; e.g. if a locomotion be succeeded by an alteration and that by an increase and that again by a coming to be: in this way there may be motion for ever so far as the time is concerned; but it will not be one motion, because all these motions do not compose one. If it is to be one, no motion can be infinite in respect of the time that it occupies, with the single exception of rotatory locomotion.
§ 1 · Everything that is in motion must be moved by something. For if it has not the source of its motion in itself it is evident that it is moved by something other than itself, for there must be something else that moves it. If on the other hand it has the source of its motion in itself, let AB be taken to represent that which is in motion of itself and not in virtue of the fact that something belonging to it is in motion. Now in the first place to assume that AB, because it is in motion as a whole and is not moved by anything external to itself, is therefore moved by itself—this is just as if, supposing that KL is moving LM and is also itself in motion, we were to deny that KM is moved by anything on the ground that it is not evident which is the part that is moving it and which the part that is moved. In the second place that which is in motion without being moved by anything does not necessarily cease from its motion because something else is at rest; but a thing must be moved by something if the fact of something else having ceased from its motion causes it to be at rest. If this is accepted, everything that is in motion must be moved by something. For if AB is assumed to be in motion, it must be divisible, since everything that is in motion is divisible. Let it be divided, then, at C. Now if CB is not in motion, then AB will not be in motion; for if it is, it is clear that AC would be in motion while BC is at rest, and thus AB cannot be in motion in its own right and primarily. But ex hypothesi AB is in motion in its own right and primarily. Therefore if CB is not in motion AB will be at rest. But we have agreed that that which is at rest if something is not in motion must be moved by something. Consequently, everything that is in motion must be moved by something; for that which is in motion will always be divisible, and if a part of it is not in motion the whole must be at rest.

Since everything that is in motion must be moved by something, let us take the case in which a thing is in locomotion and is moved by something that is itself in motion, and that again is moved by something else that is in motion, and that by something else, and so on continually: then the series cannot go on to infinity, but there must be some first mover. For let us suppose that this is not so and take the series to be infinite. Let A then be moved by B, B by C, C by D, and so on, each member of the series being moved by that which comes next to it. Then since ex hypothesi the mover while causing motion is also itself in motion, the motion
of the moved and the motion of the mover must proceed simultaneously (for the mover is causing motion and the moved is being moved simultaneously); so it is evident that the motions of A, B, C, and each of the other moved movers are simultaneous. Let us take the motion of each separately and let E be the motion of A, F of B, and G and H respectively the motions of C and D; for though they are all moved severally one by another, yet we may still take the motion of each as numerically one, since every motion is from something to something and is not infinite in respect of its extreme points. By a motion that is numerically one I mean a motion that proceeds from something numerically one and the same to something numerically one and the same in a period of time numerically one and the same; for a motion may be the same generically, specifically, or numerically: it is generically the same if it is of the same category, e.g. substance or quality; it is specifically the same if it proceeds from something specifically the same to something specifically the same, e.g. from white to black or from good to bad, which is not of a kind specifically distinct; it is numerically the same if it proceeds from something numerically one to something numerically one in the same time, e.g. from a particular white to a particular black, or from a particular place to a particular place, in a particular time; for if the time were not one and the same, the motion would no longer be numerically one though it would still be specifically one. We have dealt with this question above. Now let us further take the time in which A has completed its motion, and let it be represented by K. Then since the motion of A is finite the time will also be finite. But since the movers and the things moved are infinite, the motion EFGH, i.e. the motion that is composed of all the individual motions, must be infinite. For the motions of A, B, and the others may be equal, or the motions of the others may be greater; but assuming what is possible, we find that whether they are equal or some are greater, in both cases the whole motion is infinite. And since the motion of A and that of each of the others are simultaneous, the whole motion must occupy the same time as the motion of A; but the time occupied by the motion of A is finite: consequently the motion will be infinite in a finite time, which is impossible.

It might be thought that what we set out to prove has thus been shown, but our argument so far does not prove it, because it does not yet prove that anything impossible results; for in a finite time there may be an infinite motion, though not of one thing, but of many: and in the case that we are considering this is so; for each thing accomplishes its own motion, and there is no impossibility in many things being in motion simultaneously. But if (as we see to be universally
the case) that which primarily moves locally and corporeally must be either in contact with or continuous with that which is moved, the things moved and the movers must be continuous or in contact with one another, so that together they all form a unity: whether this unity is finite or infinite makes no difference to our present argument; for in any case since the things in motion are infinite in number the motion will be infinite, if it is possible for the motions to be either equal to or greater than one another; for we shall take as actual that which is possible. If, then, A, B, C, D form, either finite or infinite magnitude that passes through the motion EFGH in the finite time K, it follows that an infinite motion is passed through in a finite time: and whether the magnitude in question is finite or infinite this is in either case impossible. Therefore the series must come to an end, and there must be a first mover and a first moved; for the fact that this impossibility rests on an assumption is immaterial, since the case assumed is possible, and the assumption of a possible case ought not to give rise to any impossible result.

§ 2 · That which is the first mover of a thing—in the sense that it supplies not that for the sake of which but the source of the motion—is always together with that which is moved by it (by ‘together’ I mean that there is nothing between them). This is universally true wherever one thing is moved by another. And since there are three kinds of motion, local, qualitative, and quantitative, there must also be three kinds of mover, that which causes locomotion, that which causes alteration, and that which causes increase or decrease.

Let us begin with locomotion, for this is the primary motion. Everything that is in locomotion is moved either by itself or by something else. In the case of things that are moved by themselves it is evident that the moved and the mover are together; for they contain within themselves their first mover, so that there is nothing in between. The motion of things that are moved by something else must proceed in one of four ways; for there are four kinds of locomotion caused by something other than that which is in motion, viz. pulling, pushing, carrying, and twirling. All forms of locomotion are reducible to these. Thus pushing on is a form of pushing in which that which is causing motion away from itself follows up that which it pushes and continues to push it; pushing off occurs when the mover does not follow up the thing that it has moved; throwing when the mover causes a motion away from itself more violent than the natural locomotion of the thing moved, which continues its course so long as it is controlled by the motion imparted to it. Again, pushing apart and pushing together are forms respectively of pushing off and pulling: pushing apart is pushing off, which may be a motion either away from the pusher or away from something else, while pushing together
is pulling, which may be a motion towards something else as well as towards the puller. We may similarly classify all the varieties of these last two, e.g. packing and combing: the former is a form of pushing together, the latter a form of pushing apart. The same is true of the other processes of combination and separation (they will all be found to be forms of pushing apart or of pushing together), except such as are involved in the processes of becoming and perishing. (At the same time it is evident that combination and separation are not a different kind of motion; for they may all be apportioned to one or other of those already mentioned.) Again, inhaling is a form of pulling, exhaling a form of pushing; and the same is true of spitting and of all other motions that proceed through the body, whether excretive or assimilative, the assimilative being forms of pulling, the excretive of pushing off. All other kinds of locomotion must be similarly reduced; for they all fall under one or other of our four heads. And again, of these four, carrying and twirling are reducible to pulling and pushing. For carrying always follows one of the other three methods; for that which is carried is in motion accidentally, because it is in or upon something that is in motion, and that which carries it is in doing so being either pulled or pushed or twirled; thus carrying belongs to all the other three kinds of motion in common. And twirling is a compound of pulling and pushing; for that which is twirling a thing must be pulling one part of the thing and pushing another part, since it impels one part away from itself and another part towards itself. If, therefore, it can be shown that that which is pushing and that which is pulling are together with that which is being pushed and that which is being pulled, it will be evident that in all locomotion there is nothing between moved and mover.

But the former fact is clear even from the definitions; for pushing is motion to something else from oneself or from something else, and pulling is motion from something else to oneself or to something else, when the motion of that which is pulling is quicker than the motion that would separate from one another the two things that are continuous; for it is this that causes one thing to be pulled on along with the other. (It might indeed be thought that there is a form of pulling that arises in another way: that wood, e.g. pulls fire in a manner different from the described above. But it makes no difference whether that which pulls is in motion or is stationary when it is pulling: in the latter case it pulls to the place where it is, while in the former it pulls to the place where it was.) Now it is impossible to move anything either from oneself to something else or from something else to oneself without being in contact with it: it is evident, therefore, that in all locomotion there is nothing between moved and mover.

Nor again is there anything intermediate between that which undergoes and
that which causes alteration: this can be shown by induction; for in every case we find that the respective extremities of that which causes and that which undergoes alteration are together. For our assumption is that things that are undergoing alteration are altered in virtue of their being affected in respect of their so-called affective qualities; for every body differs from another in possessing a greater or lesser number of sensible characteristics or in possessing the same sensible characteristics in a greater or lesser degree. But the alteration of that which undergoes alteration is also caused by the above-mentioned characteristics, which are affections of some underlying quality. Thus we say that a thing is altered by becoming hot or sweet or thick or dry or white; and we make these assertions alike of what is inanimate and of what is animate, and further, where animate things are in question, we make them both of the parts that have no power of sense-perception and of the senses themselves. For in a way even the senses undergo alteration, since actual perception is a motion through the body in the course of which the sense is affected in a certain way. Thus the animate is capable of every kind of alteration of which the inanimate is capable; but the inanimate is not capable of every kind of alteration of which the animate is capable, since it is not capable of alteration in respect of the senses: moreover the inanimate is unconscious of being affected, whereas the animate is conscious of it, though there is nothing to prevent the animate also being unconscious of it when the alteration does not concern the senses. Since, then, the alteration of that which undergoes alteration is caused by sensible things, in every case of such alteration it is evident that the extremities of that which causes and that which undergoes alteration are together. For the air is continuous with the one and the body with the air. Again, the colour is continuous with the light and the light with the sight. And the same is true of hearing and smelling; for the primary mover in respect to the moved is the air. Similarly, in the case of tasting, the flavour is together with the sense of taste. And it is just the same in the case of things that are inanimate and incapable of sense-perception. Thus there can be nothing between that which undergoes and that which causes alteration.

Nor, again, can there be anything between that which suffers and that which causes increase; for that which starts the increase does so by becoming attached in such a way that the whole becomes one. Again, the decrease of that which suffers decrease is caused by a part of the thing becoming detached. So both that which causes increase and that which causes decrease must be continuous; and if two things are continuous there can be nothing between them.

It is evident, therefore, that between the moved and the mover—the first and the last—in reference to the moved there is nothing intermediate.
§ 3 · That everything which undergoes alteration is altered by sensible causes, and that there is alteration only in things that are said to be affected in their own right by sensible things, can be seen from the following considerations. Of all other things it would be most natural to suppose that there is alteration in figures and shapes, and in states and in the processes of acquiring and losing these; but as a matter of fact in neither of these two cases is there alteration.

For when anything has been completely shaped or structured, we do not call it by the name of its material: e.g. we do not call the statue bronze or the candle wax or the bed wood, but we use a paronymous expression and call them brazen, waxen, and wooden respectively. But when a thing has been affected and altered in any way we still call it by the original name: thus we speak of the bronze or the wax being fluid or hard or hot (not only that—we also call the fluid and the hot stuff bronze), giving the matter the same name as the affection.

Since, therefore, having regard to the figure or shape of a thing we no longer call that which has become of a certain figure by the name of the material that exhibits the figure, whereas having regard to a thing’s affections or alterations we do, it is evident that becomings of the former kind cannot be alterations.

Moreover it would seem absurd actually to speak in this way, to speak, that is to say, of a man or house or anything else that has come into existence as having been altered. Though it may be true that every such becoming is necessarily the result of something’s being altered, the result, e.g. of the matter’s being condensed or rarefied or heated or cooled, nevertheless it is not the things that are coming into existence that are altered, and their becoming is not an alteration.

Again, states, whether of the body or of the soul, are not alterations. For some are excellences and others are defects, and neither excellence nor defect is an alteration: excellence is a perfection (for when anything acquires its proper excellence we call it perfect, since it is then really in its natural state: e.g. a circle is perfect when it becomes really a circle and when it is best), while defect is a perishing of or departure from this condition. So just as when speaking of a house we do not call its arrival at perfection an alteration (for it would be absurd to suppose that the coping or the tiling is an alteration or that in receiving its coping or its tiling a house is altered and not perfected), the same also holds good in the case of excellences and defects and of the things that possess or acquire them; for excellences are perfections and defects are departures: consequently they are not alterations.

Further, we say that all excellences depend upon particular relations. Thus

48 Reading *ai geneseis autai* (*ai geneseis* Ross).
bodily excellences such as health and fitness we regard as consisting in a blending of hot and cold elements in due proportion, in relation either to one another within the body or to the surrounding; and in like manner we regard beauty, strength, and all the other excellences and defects. Each of them exists in virtue of a particular relation and puts that which possesses it in a good or bad condition with regard to its proper affections, where by ‘proper’ affections I mean those by which the thing is naturally produced or destroyed. Since, then, relatives are neither themselves alterations nor the subjects of alterations or of becoming or in fact of any change whatever, it is evident that neither states nor the processes of losing and acquiring states are alterations, though it may be true that their becoming or perishing, like that of form and shape, necessarily involves the alteration of certain other things, e.g. hot and cold or dry and wet elements or the elements, whatever they may be, on which the states primarily depend. For each defect or excellence involves a relation with those things from which the possessor is naturally subject to alteration: thus excellence disposes its possessor to be unaffected or to be affected thus and so, while defect disposes its possessor to be affected or to be unaffected in a contrary way.

And the case is similar in regard to the states of the soul, all of which too exist in virtue of particular relations, the excellences being perfections and the defects departures. Moreover, excellence puts its possessor in good condition, while defect puts its possessor in a bad condition, with regard to its proper affections. Consequently these cannot be alterations either, nor can the processes of losing and acquiring them be so, though their becoming is necessarily the result of an alteration of the sensitive part of the soul, and this is altered by sensible objects; for all moral excellence is concerned with bodily pleasures and pains, which again depend either upon acting or upon remembering or upon anticipating. Now those that depend upon action are determined by sense-perception, and are moved by something sensible; and those that depend upon memory or anticipation are likewise to be traced to sense-perception; for in these cases pleasure is felt either in remembering what one has experienced or in anticipating what one is going to experience. Thus all pleasure of this kind must be produced by sensible things; and since the presence of defect or excellence involves the presence of pleasure or pain (with which excellence and defect are always concerned), and pleasures and pains are alterations of the sensitive part, it is evident that the loss and acquisition of these states too must be the result of the alteration of something. Consequently, though their becoming is accompanied by an alteration, they are not themselves alterations.

Again, the states of the intellectual part of the soul are not alterations, nor is
there any becoming of them. For the possession of knowledge most especially depends upon a particular relation. And further, it is evident that there is no becoming of these states. For that which is potentially possessed of knowledge becomes possessed of knowledge not by being moved itself but by reason of the presence of something else; for when it meets with the particular object, it knows in a manner the universal through the particular. Again, there is no becoming of the actual use and activity of these states, unless it is thought that there is a becoming of vision and touching and that the use and activity in question is similar to these. And the original acquisition of knowledge is not a becoming or an alteration; for we are said to know and to understand when our intellect has reached a state of rest and come to a standstill, and there is no becoming that leads to a state of rest, since, as we have said above, no change at all can have a becoming. Moreover, just as when anyone has passed from a state of intoxication or sleep or disease to the contrary state, we do not say that he has become possessed of knowledge again, in spite of the fact that he was previously incapable of using his knowledge, so, too, when anyone originally acquires the state, we do not say that he becomes possessed of knowledge; for the possession of understanding and knowledge is produced by the soul’s settling down out of the restlessness natural to it. Hence, too, in learning and in forming judgements on matters relating to their sense-perceptions children are inferior to adults owing to the great amount of restlessness and motion in their souls. Nature itself in some cases causes the soul to settle down and come to a state of rest, while in others other things do so; but in either case the result is brought about through the alteration of something in the body, as we see in the case of the use and activity of the intellect arising from a man’s becoming sober or being awakened. It is evident, then, from the preceding argument that alteration and being altered occur in sensible things and in the sensitive part of the soul and, except accidentally, in nothing else.

§ 4 · A difficulty may be raised as to whether every motion is commensurable with every other or not. Now if they are all commensurable and if things that move an equal distance in an equal time have an equal speed, then we may have a circumference equal to a straight line, or, of course, the one may be greater or less than the other. Further, if one thing alters and another accomplishes a locomotion in an equal time, we may have an alteration and a locomotion equal to one another: thus an affection will be equal to a length, which is impossible. But is it not only when an equal distance is moved in an equal time that the velocities are equal? But an affection cannot be equal to a length. Therefore there cannot be an alteration equal to or less than a locomotion; and consequently not every
motion is commensurable.

But how will our conclusion work out in the case of the circle and the straight line? It would be absurd to suppose that the motion of one thing in a circle and of another in a straight line cannot be similar, but that the one must inevitably move more quickly or more slowly than the other, just as if the course of one were downhill and of the other uphill. Moreover it does not make any difference to the argument to say that the one motion must be quicker or slower than the other; for then the circumference can be greater or less than the straight line; and if so it is possible for the two to be equal. For if in the time A one passes over the distance B and the other C, B will be greater than C; for this is what we took ‘quicker’ to mean; and so it is also quicker if it traverses an equal distance in less time; consequently there will be a part of A in which B will pass over a part of the circle equal to the distance which C will traverse in the whole of A. None the less, if the two are commensurable, we are confronted with the consequence stated above, viz. that there may be a straight line equal to a circle. But these are not commensurable; and so the corresponding motions are not commensurable either, and things not synonymous are all incommensurable. E.g. a pen, a wine, and the highest note in a scale are not commensurable: we cannot say whether any one of them is sharper than any other; and why is this? they are incommensurable because they are homonymous. But the highest note in a scale is commensurable with the leading-note, because the term ‘sharp’ has the same meaning as applied to both. Can it be, then, that the term ‘quick’ has not the same meaning in the two cases? If so, far less will it have the same meaning as applied to alteration and to locomotion.

Or shall we in the first place deny that things are always commensurable if they are not homonymous? For the term ‘much’ has the same meaning whether applied to water or to air, yet water and air are not commensurable; or, if this is not so, ‘double’ at any rate would seem to have the same meaning (denoting in each case the proportion of two to one), yet they are not commensurable. But here again may we not use the same argument and say that the term ‘much’ is homonymous? In fact there are some terms of which even the definitions are homonymous; e.g. if ‘much’ were defined as ‘so much and more’, ‘so much’ would mean something different in different cases; ‘equal’ is similarly homonymous; and ‘one’ again is perhaps inevitably homonymous; and if ‘one’ is, so is ‘two’. Otherwise why is it that some things are commensurable while others are not, if the nature is one?

Is it because they are in different primary recipients? Thus horse and dog are so commensurable that we may say which is the whiter, since that which primarily contains the whiteness is the same in both, viz. the surface; and similarly they
are commensurable in respect of size. But water and speech are not\(^{49}\) since the primary recipients are different. But clearly we could thus make all things one and say that each is in a different recipient; thus equality, sweetness, and whiteness will be the same, though which contains them is different in different cases. Moreover, it is not any casual thing that is receptive of any attribute: each single thing is primarily receptive of a single attribute.

Must we then say that, if things are to be commensurable, not only must they be non-homonymous, but there must also be specific differences either in the attribute itself or in that which contains the attribute—that these, I mean, must not be divisible in the way in which colour is divided into kinds? Thus in this respect one thing will not be commensurable with another, i.e. we cannot say that one is more coloured than the other where only colour in general and not any particular colour is meant; but they are commensurable in respect of whiteness.

Similarly in the case of motion: two things are of the same velocity if in an equal time they perform a certain equal amount of motion. Suppose, then, that in a certain time an alteration is undergone by one half of a body’s length and a locomotion is accomplished by the other half: can we say that in this case the alteration is equal to the locomotion and of the same velocity? That would be absurd, and the reason is that there are different species of motion. And if two things are of equal velocity if they move over an equal distance in an equal time, we have to admit the equality of a straight line and a circumference. What, then, is the reason for this? Is it that locomotion is a genus or that line is a genus? (For the time is the same.) If the lines are specifically different, the locomotions also differ specifically from one another; for locomotion is specifically differentiated according to the specific differentiation of that over which it takes place. (And also accordingly as the instrument of the locomotion is different: thus if feet are the instrument, it is walking, if wings it is flying. Or is that not so? Is locomotion different only according to the shape of the path?) Thus things are of equal velocity if in an equal time they traverse the same magnitude; and when I call it ‘the same’ I mean that it contains no specific difference and therefore no difference in the motion that takes place over it. So we have now to consider how motion is differentiated; and this discussion serves to show that the genus is not a unity but contains a plurality latent in it and distinct from it, and that some homonymies are far removed from one another, some have a certain likeness, and some are nearly related either generically or analogically, with the result that they seem not to be homonymies though they really are.

\(^{49}\)Both water and speech can be called leukos or limpid.
When, then, is there a difference of species? If the same thing is in different recipients? or if different things are in different recipients? And how are we to define the limits of a species? What will enable us to decide that particular instances of whiteness or sweetness are the same or different? Is it enough that it appears different in one subject from what it appears in another? Or must there be no sameness at all? And further, where alteration is in question, how is one alteration to be of equal velocity with another? One person may be cured quickly and another slowly, and cures may also be simultaneous: so that, recovery of health being an alteration, we have here alterations of equal velocity, since such alteration occupies an equal time. But what alteration? We cannot here speak of equality here: what is equality in the category of quantity is similarity here. However, let us say that there is equal velocity where the same change is accomplished in an equal time. Are we, then, to find the commensurability in the recipient of the affection or in the affection itself? In the case that we have just been considering it is the fact that health is one and the same that enables us to arrive at the conclusion that the one alteration is neither more nor less than the other, but that both are alike. If on the other hand the affection is different in the two cases, e.g. when the alterations take the form of becoming white and becoming healthy respectively, here there is no sameness or equality or similarity inasmuch as the difference in the affections at once makes the alterations specifically different, and there is no unity of alteration any more than there would be unity of locomotion under like conditions. So we must find out how many species there are of alteration and of locomotion respectively. Now if the things that are in motion—that is to say, the things to which the motions belong in their own right and not accidentally—differ specifically, then their motions will also differ specifically; and if they differ generically or numerically, the motions also will differ generically or numerically. But there still remains the question whether, supposing that two alterations are of equal velocity, we ought to look for this equality in the sameness or similarity of the affections, or in the things altered, to see e.g. whether a certain quantity of each has become white. Or ought we not rather to look for it in both? That is to say, the alterations are the same or different according as the affections are the same or different, while they are equal or unequal according as the things altered are equal or unequal.

And now we must consider the same question in the case of becoming and perishing: how is one becoming of equal velocity with another? They are of equal velocity if in an equal time there are produced two things that are the same and specifically inseparable, e.g. two men (not two animals). Similarly one is quicker than the other if in an equal time the product is different in the two cases. (For
we have no pair of terms that will convey this difference in the way in which dissimilarity functions for qualities.) If substances were numbers, there would be a greater number and a lesser number within the same species; but there is no common term that will include both relations, nor are there terms to express each of them separately in the same way as we indicate a higher degree or preponderance of an affection by ‘more’, of a quantity by ‘greater’.

§ 5 · Now since a mover always moves something and is in something, and extends to something (by ‘is in something’ I mean that it occupies a time; and by ‘extends to something’ I mean that it involves a certain amount of distance—for at any moment when a thing is causing motion, it also has caused motion, so that there must always be a certain amount of distance that has been traversed and a certain amount of time that has been occupied). If, then, A is the mover, B the moved, C the distance moved, and D the time, then in the same time the same force A will move 1/2B twice the distance C, and in 1/2D it will move 1/2B the whole distance C; for thus the rules of proportion will be observed. Again if a given force moves a given object a certain distance in a certain time and half the distance in half the time, half the motive power will move half the object the same distance in the same time. Let E represent half the motive power A and F half B: then they are similarly related, and the motive power is proportioned to the weight, so that each force will cause the same distance to be traversed in the same time.

But if E moves F a distance C in a time D, it does not necessarily follow that E can move twice F half the distance C in the same time. If, then, A moves B a distance C in a time D, it does not follow that E, being half of A, will in the time D or in any fraction of it cause B to traverse a part of C the ratio between which and the whole of C is proportionate to that between A and E—in fact it might well be that it will cause no motion at all; for it does not follow that, if a given motive power causes a certain amount of motion, half that power will cause motion either of any particular amount or in any length of time: otherwise one man might move a ship, since both the motive power of the ship-haulers and the distance that they all cause the ship to traverse are divisible into as many parts as there are men. Hence Zeno’s reasoning is false when he argues that there is no part of the millet that does not make a sound; for there is no reason why any such part should not in any length of time fail to move the air that the whole bushel moves in falling. In fact it does not of itself move even such a quantity of the air as it would move if this part were by itself; for no part even exists otherwise than potentially in the whole.
If there are two movers each of which separately moves one of two weights a given distance in a given time, then the forces in combination will move the combined weights an equal distance in an equal time; for in this case the rules of proportion apply.

Then does this hold good of alteration and of increase also? Surely it does; for there is something that causes increase and something that suffers increase, and the one causes and the other suffers a certain amount of increase in a certain amount of time. Similarly with what alters and what is altered—something is altered a certain amount, or rather degree, in a certain amount of time: thus in twice as much time twice as much alteration will be completed and twice as much alteration will occupy twice as much time; and half in half the time, and in half half, or again, in the same amount of time it will be altered twice as much.

One the other hand if that which causes alteration or increase causes a certain amount of increase or alteration in a certain amount of time, it does not necessarily follow that it will do half in half the time or in half the time half: it may happen that there will be no alteration or increase at all, the case being the same as with the weight.
§ 1 · Was there ever a becoming of motion before which it had no being, and is it perishing again so as to leave nothing in motion? Or are we to say that it never had any becoming and is not perishing, but always was and always will be? Is it in fact an immortal never-failing property of things that are, a sort of life as it were to all naturally constituted things?

Now the existence of motion is asserted by all who have anything to say about nature, because they all concern themselves with the construction of the world and study the question of becoming and perishing, which processes could not come about without the existence of motion. But those who say that there is an infinite number of worlds, some of which are in process of becoming while others are in process of perishing, assert that there is always motion (for these processes of becoming and perishing of the worlds necessarily involve motion), whereas those who hold that there is only one world, whether everlasting or not, make corresponding assumptions in regard to motion. If then it is possible that at any time nothing should be in motion, this must come about in one of two ways: either in the manner described by Anaxagoras, who says that all things were together and at rest for an infinite period of time, and that then Mind introduced motion and separated them; or in the manner described by Empedocles, according to whom the universe is alternately in motion and at rest—in motion, when Love is making the one out of many, or Strife is making many out of one, and at rest in the intermediate periods of time—his account being as follows:

Since One hath learned to spring from Manifold,
And One disjoined makes Manifold arise,
Thus they Become, nor stable is their life:
But since their motion must alternate be,
Thus have they ever Rest upon their round:

for we must suppose that he means by ‘alternate’ that they change from the one motion to the other. We must consider, then, how this matter stands; for the discovery of the truth about it is of importance, not only for the study of nature, but also for the investigation of the First Principle.

50 Reading pasin, with the MSS (pasan, Ross).
51 Frag. 17, lines 9-13, Diels-Kranz.
Let us take our start from what we have already laid down in our course on Physics. Motion, we say, is the actuality of the movable in so far as it is movable. Each kind of motion, therefore, necessarily involves the presence of the things that are capable of that motion. In fact, even apart from the definition of motion, every one would admit that in each kind of motion it is that which is capable of that motion that is in motion: thus it is that which is capable of alteration that is altered, and that which is capable of local change that is in locomotion; and so there must be something capable of being burned before there can be a process of being burned, and something capable of burning before there can be a process of burning. Moreover, these things also must either have a beginning before which they had no being, or they must be eternal. Now if there was a becoming of every movable thing, it follows that before the motion in question another change or motion must have taken place in which that which was capable of being moved or of causing motion had its becoming. To suppose, on the other hand, that these things were in being throughout all previous time without there being any motion appears unreasonable on a moment’s thought, and still more unreasonable, we shall find, on further consideration. For if we are to say that, while there are on the one hand things that are movable, and on the other hand things that are motive, there is a time when there is a first mover and a first moved, and another time when there is no such thing but only something that is at rest, then this thing must previously have been in process of change; for there must have been some cause of its rest, rest being the privation of motion. Therefore, before this first change there will be a previous change. For some things cause motion in only one way, while others can produce either of two contrary motions: thus fire causes heating but not cooling, whereas it would seem that knowledge may be directed to two contrary ends while remaining one and the same. Even in the former class, however, there seems to be something similar; for a cold thing in a sense causes heating by turning away and retiring, just as one possessed of knowledge voluntarily makes an error when he uses his knowledge in the reverse way. But at any rate all things that are capable of affecting and being affected, or of causing motion and being moved, are capable of it not under all conditions, but only when they are in a particular condition and approach one another: so it is on the approach of one thing to another that the one causes motion and the other is moved, and when they are present under such conditions as rendered the one motive and the other movable. So if the motion was not always in process, it is clear that they cannot have been in a condition such as to render them capable respectively of being moved and of causing motion, but one or other of them needed change; for in what is relative this is a necessary consequence: e.g. if one thing is double another when before it
was not so, one or other of them, if not both, must have changed. It follows, then, that there will be a change previous to the first.

(Further, how can there be any before and after without the existence of time? Or how can there be any time without the existence of motion? If, then, time is the number of motion or itself a kind of motion, it follows that, if there is always time, motion must also be eternal. But so far as time is concerned we see that all with one exception are in agreement in saying that it is uncreated: in fact, it is just this that enables Democritus to show that all things cannot have had a becoming; for time, he says, is uncreated. Plato alone asserts the creation of time, saying that it is simultaneous with the world, and that the world came into being. Now since time cannot exist and is unthinkable apart from the now, and the now is a kind of middle-point, uniting as it does in itself both a beginning and an end, a beginning of future time and an end of past time, it follows that there must always be time; for the extremity of the last period of time that we take must be found in some now, since in time we can take nothing but nows. Therefore, since the now is both a beginning and an end, there must always be time on both sides of it. But if this is true of time, it is evident that it must also be true of motion, time being a kind of affection of motion.)

The same reasoning will also serve to show the imperishability of motion: just as a becoming of motion would involve, as we saw, a change previous to the first, in the same way a perishing of motion would involve a change subsequent to the last: for when a thing ceases to be moved, it does not therefore at the same time cease to be movable—e.g. the cessation of being burned does not involve the cessation of the capacity of being burned, since a thing may be capable of being burned without being burned—nor, when a thing ceases to be a mover, does it therefore at the same time cease to be motive. Again, the destructive agent will have to be destroyed when it has destroyed, and then that which has the capacity of destroying it will have to be destroyed afterwards; for being destroyed is a kind of change. If, then, this is impossible, it is clear that motion is eternal and cannot have existed at one time and not at another: in fact, such a view can hardly be described as anything else than fantastic.

And much the same may be said of the view that such is how things naturally are and that this must be regarded as a principle, as would seem to be the view of Empedocles when he says that the constitution of the world is of necessity such that Love and Strife alternately predominate and cause motion, while in the intermediate period of time there is a state of rest. Probably also those who, like Anaxagoras, assert a single principle would hold this view. But that which holds by nature and is natural can never be anything disorderly; for nature is everywhere
the cause of order. Moreover, there is no ratio in the relation of the infinite to the infinite, whereas order always means ratio. But if we say that there is first a state of rest for an infinite time, and then motion is started at some moment, and that the fact that it is this rather than a previous moment is of no importance, and that it involves no order, then we can no longer say that it is nature’s work; for if anything is of a certain character naturally, it either is so invariably and is not sometimes of this and sometimes of another character (e.g. fire, which travels upwards naturally, does not sometimes do so and sometimes not) or there is a ratio in the variation. It would be better, therefore, to say with Empedocles and anyone else who may have maintained such a theory as his that the universe is alternately at rest and in motion; for in a system of this kind we have at once a certain order. But even here the holder of the theory ought not only to assert the fact: he ought also to explain the cause of it; i.e. he should not make any mere assumption or lay down any unreasoned axiom, but should employ either inductive or demonstrative reasoning. The Love and Strife postulated are not in themselves causes, nor is it of the essence of either that it should be so, the essential function of the former being to unite, of the latter to separate. If he is to go on to explain this alternate predominance, he should adduce cases where such a state of things exists, as he points to the fact that among mankind we have something that unites men, namely Love, while on the other hand enemies avoid one another: thus from the observed fact that this occurs in certain cases comes the assumption that it occurs also in the universe. Then, again, some argument is needed to explain why the predominance of each lasts for an equal period of time. But it is a wrong assumption to suppose universally that we have an adequate first principle in virtue of the fact that something always is so or always happens so. Thus Democritus reduces the causes that explain nature to the fact that things happened in the past in the same way as they happen now; but he does not think fit to seek for a principle to explain this ‘always’: so, while his theory is right in so far as it is applied to certain individual cases, he is wrong in making it of universal application. Thus, a triangle always has its angles equal to two right angles, but there is nevertheless an ulterior cause of the eternity, whereas principles are external and have no ulterior cause. Let this conclude what we have to say in support of our contention that there never was a time when there was not motion, and never will be a time when there will not be motion.

§ 2 · The arguments that may be advanced against this position are not difficult to dispose of. The chief considerations that might be thought to indicate that motion may exist though at one time it had not existed at all are the following:

First, it may be said that no change is eternal; for the nature of all change
is such that it proceeds from something to something, so that every change must be bounded by the contraries that mark its course, and no motion can go on to infinity.

Again, we see that a thing that neither is in motion nor contains any motion within itself can be set in motion; e.g. inanimate things that are (whether the whole or some part is in question) not in motion but at rest, are at some moment set in motion; whereas, if motion cannot have a becoming before which it had no being, these things ought to be either always or never in motion.

The fact is evident above all in the case of animate beings; for it sometimes happens that there is no motion in us and we are quite still, and that nevertheless we are then at some moment set in motion, that is to say it sometimes happens that we produce a beginning of motion in ourselves from within ourselves, without anything having set us in motion from without. We see nothing like this in the case of inanimate things, which are always set in motion by something else from without: the animal, on the other hand, we say, moves itself; therefore, if an animal is ever in a state of absolute rest, we have a motionless thing in which motion can be produced from the thing itself, and not from without. Now if this can occur in an animal, why should not the same be true also of the universe as a whole? If it can occur in a small world it could also occur in a great one; and if it can occur in the world, it could also occur in the infinite; that is, if the infinite could as a whole possibly be in motion or at rest.

Of these objections, then, the first-mentioned—that motion to opposites is not always the same and numerically one—is a correct statement; in fact, this may be said to be necessary, provided that it is possible for the motion of that which is one and the same to be not always one and the same. (I mean that e.g. we may question whether the note given by a single string is one and the same, or is different, although the string is in the same condition and is moved in the same way.) But still, however this may be, there is nothing to prevent there being a motion that is the same in virtue of being continuous and eternal: we shall have something to say later that will make this point clearer.

No absurdity is involved in the fact that something not in motion may be set in motion, that which is to cause motion from without being at one time present, and at another absent. Nevertheless, how this can be so remains matter for inquiry; how it comes about, I mean, that the same motive force at one time causes a thing to be in motion, and at another does not do so; for the difficulty raised by our objector really amounts to this—why is it that some things are not always at rest, and others always in motion?

The third objection may be thought to present more difficulty than the others,
namely, that which alleges that motion arises in things in which it did not exist before, and adduces in proof the case of animate things: thus an animal is first at rest and afterwards walks, not having been set in motion apparently by anything from without. This, however, is false; for we observe that there is always some part of the animal’s organism in motion, and the cause of the motion of this part is not the animal itself, but, it may be, its environment. Moreover, we say that the animal itself originates not all of its motions but its locomotion. So it may well be the case—or rather perhaps it must be the case—that many motions are produced in the body by its environment, and some of these set in motion the intellect or the appetite, and this again then sets the whole animal in motion: this is what happens in sleep: though there is then no perceptive motion in them, there is some motion that causes them to wake up again. But we will leave this point also to be elucidated at a later stage in our discussion.

§ 3 · Our enquiry will resolve itself at the outset into a consideration of the above-mentioned problem—what can be the reason why some things in the world at one time are in motion and at another are at rest again? Now one of three things must be true: either all things are always at rest, or all things are always in motion, or some things are in motion and others at rest; and in this last case again either the things that are in motion are always in motion and the things that are at rest are always at rest, or they are all naturally capable alike of motion and of rest; or there is yet a third possibility remaining—it may be that some things in the world are always motionless, others always in motion, while others again admit of both conditions. This last is the account of the matter that we must give; for herein lies the solution of all the difficulties raised and the conclusion of the investigation upon which we are engaged.

To maintain that all things are at rest, and to disregard sense-perception and attempt to show the theory to be reasonable, would be an instance of intellectual weakness: it would call in question a whole system, not a particular detail; moreover, it would be an attack not only on the physicist but on almost all sciences and all opinions, since motion plays a part in all of them. Further, just as in arguments about mathematics objections that involve first principles do not affect the mathematician—and the other sciences are in similar case—so, too, objections involving the point that we have just raised do not affect the physicist; for it is a hypothesis that nature is a principle of motion.

The assertion that all things are in motion we may fairly regard as false, though it is less subversive of physical science; for though in our course on physics it was laid down that nature is a principle of rest no less than of motion, nevertheless
motion is the natural state; moreover, the view is actually held by some that not merely some things but all things in the world are in motion and always in motion, though we cannot apprehend the fact by sense-perception. Although the supporters of this theory do not state clearly what kind of motion they mean, or whether they mean all kinds, it is no hard matter to reply to them. For there cannot be a continuous process either of increase or of decrease: that which comes between the two has to be included. The theory resembles that about the stone being worn away by the drop of water or split by plants growing out of it: if so much has been extruded or removed by the drop, it does not follow that half the amount has previously been extruded or removed in half the time; but, as in the case of the hauled ship, so many drops set so much in motion, but a part of them will not set as much in motion in any period of time. The amount removed is, it is true, divisible into a number of parts, but no one of these was set in motion separately: they were all set in motion together. It is evident, then, that from the fact that the decrease is divisible into an infinite number of parts it does not follow that some part must always be passing away: it all passes away at a particular moment. Similarly, too, in the case of any alteration whatever, if that which suffers alteration is infinitely divisible it does not follow from this that the same is true of the alteration itself, which often occurs all at once, as in freezing. Again, when any one has fallen ill, there must follow a period of time in which he will recover: the change cannot take place in an instant; and the change cannot be a change to anything else but health. The assertion, therefore, that alteration is continuous is too much at odds with the evident facts; for alteration is from one contrary to another. Moreover, a stone becomes neither harder nor softer. Again, in the matter of locomotion, it would be a strange thing if a stone could be falling or resting on the ground without our being able to perceive the fact. Again, earth and all other bodies necessarily remain in their proper places and are moved from them only by violence; from the fact, then, that some of them are in their proper places it follows that in respect of place all things cannot be in motion. These and other similar arguments, then, should convince us that it is impossible either that all things are always in motion or that all things are always at rest.

Nor again can it be that some things are always at rest, others always in motion, and nothing sometimes at rest and sometimes in motion. This theory must be pronounced impossible on the same grounds as those previously mentioned: viz. that we see the above-mentioned changes occurring in the case of the same things. We may further point out that the defender of this position is fighting against the evident facts; for there can be no increase and no compulsory motion, if it is impossible that a thing can be at rest before being set in motion unnaturally.
This theory, then, does away with becoming and perishing. Moreover, motion, it would seem, is generally thought to be a sort of becoming and perishing; for a thing comes to be that, or in that, to which it changes; and it ceases to be that, or in that, from which it changes. It is clear, therefore, that there are cases of occasional motion and occasional rest.

We have now to take the assertion that all things are sometimes at rest and sometimes in motion and to confront it with the arguments previously advanced. We must take our start again, as we did before, from the possibilities that we distinguished just above. Either all things are at rest, or all things are in motion, or some things are at rest and others in motion. And if some things are at rest and others in motion, then it must be that either all things are sometimes at rest and sometimes in motion, or some things are always at rest and the remainder always in motion, or some of the things are always at rest and others always in motion while others again are sometimes at rest and sometimes in motion. Now we have said before that it is impossible that all things should be at rest: nevertheless we may now repeat the point. For even if it is really the case, as some assert, that what is is infinite and motionless, it certainly does not appear to be so if we follow sense-perception: many things that exist appear to be in motion. Now if there is such a thing as false opinion or opinion at all, there is also motion; and similarly if there is such a thing as imagination, or if it is the case that anything seems to be different at different times; for imagination and opinion are thought to be motions of a kind. But to investigate this question at all—to seek an argument in a case where we are too well off to require argument—implies bad judgement of what is better and what is worse, what commends itself to belief and what does not, what is a principle and what is not. It is likewise impossible that all things should be in motion or that some things should be always in motion and the remainder always at rest. We have sufficient ground for rejecting all these theories in the single fact that we see some things sometimes in motion and sometimes at rest. It is evident, therefore, that it is no less impossible that some things should be always in motion and the remainder always at rest than that all things should be at rest or that all things should be in motion continuously. It remains, then, to consider whether all things are so constituted as to be capable both of being in motion and of being at rest, or whether, while some things are so constituted, some are always at rest and some are always in motion; for it is this last view that we have to show to be true.

§ 4 · Now of things that cause motion or suffer motion, some do so accidentally, others in their own right—accidentally if they merely belong to or contain as a part a thing that causes motion or suffers motion, in their own right if they cause
motion or suffer motion not merely by belonging to such a thing or containing it as a part.

Of things which move in their own right, some derive their motion from themselves, others from something else: and in some cases their motion is natural, in others violent and unnatural. Thus in things that derive their motion from themselves, e.g. all animals, the motion is natural. (For when an animal is in motion its motion is derived from itself; and whenever the source of the motion of a thing is in the thing itself we say that the motion of that thing is natural. Therefore the animal as a whole moves itself naturally; but the body of the animal may be in motion unnaturally as well as naturally: it depends upon the kind of motion that it may chance to be suffering and the kind of element of which it is composed.) And the motion of things that derive their motion from something else is in some cases natural, in others unnatural: e.g. upward motion of earthy things and downward motion of fire are unnatural. Moreover the parts of animals are often in motion in an unnatural way, their positions and the character of the motion being abnormal. The fact that a thing that is in motion derives its motion from something is most evident in things that are in motion unnaturally, because in such cases it is clear that the motion is derived from something other than the thing itself. Next to things that are in motion unnaturally those whose motion while natural is derived from themselves—e.g. animals—make this fact clear; for here the uncertainty is not as to whether the motion is derived from something but as to how we ought to distinguish in the thing between the mover and the moved. It would seem that in animals, just as in ships and things not naturally constituted, that which causes motion is separate from that which suffers motion, and that in this way the animal as a whole causes its own motion.

The greatest difficulty, however, is presented by the remaining case of those that we last distinguished. Where things derive their motion from something else, we laid it down that some move contrary to nature: the others remain to be contrasted with them, as moving by nature. It is in these cases that difficulty would be experienced in deciding whence the motion is derived, e.g. in the case of light and heavy things. When these things are in motion to positions the reverse of those they would properly occupy, their motion is violent: when they are in motion to their proper positions—the light thing up and the heavy thing down—their motion is natural; but in this case it is no longer evident, as it is when the motion is unnatural, whence their motion is derived. It is impossible to say that their motion is derived from themselves: this is a characteristic of life and peculiar to living things. Further, if it were, it would have been in their power to stop themselves (I mean that if e.g. a thing can cause itself to walk it can also cause itself not to walk),
and so, if fire itself possesses the power of upward locomotion, it is clear that it should also possess the power of downward locomotion. Moreover if things move themselves, it would be unreasonable to suppose that in only one kind of motion is their motion derived from themselves. Again, how can anything continuous and naturally unified move itself? In so far as a thing is one and continuous not merely in virtue of contact, it is impassive: it is only in so far as a thing is divided that one part of it is by nature active and another passive. Therefore none of these things move themselves (for they are naturally unified), nor does anything else that is continuous: in each case the mover must be separate from the moved, as we see to be the case with inanimate things when an animate thing moves them. It is the fact that these things also always derive their motion from something: what it is would become evident if we were to distinguish the different kinds of cause.

The above-mentioned distinctions can also be made in the case of things that cause motion: some of them are capable of causing motion unnaturally (e.g. the lever is not naturally capable of moving the weight), others naturally (e.g. what is actually hot is naturally capable of moving what is potentially hot); and similarly in the case of all other things of this kind.

In the same way, too, what is potentially of a certain quality or of a certain quantity or in a certain place is naturally movable when it contains the corresponding principle in itself and not accidentally (for the same thing may be both of a certain quality and of a certain quantity, but the one is an accidental, not an essential property of the other). So when fire or earth is moved by something the motion is violent when it is unnatural, and natural when it brings to actuality the proper activities that they potentially possess. But the fact that the term ‘potentially’ is used in more than one way is the reason why it is not evident whence such motions as the upward motion of fire and the downward motion of earth are derived. One who is learning a science knows potentially in a different way from one who while already possessing the knowledge is not actually exercising it. Wherever something capable of acting and something capable of being acted on are together, what is potential becomes actual: e.g. the learner becomes from one potential something another potential something (for one who possesses knowledge of a science but is not actually exercising it knows the science potentially in a sense, though not in the same sense as before he learnt it). And when he is in this condition, if something does not prevent him, he actively exercises his knowledge: otherwise he would be in the contradictory state of not knowing. In regard to natural bodies also the case is similar. Thus what is cold is potentially hot: then a change takes place and it is fire, and it burns, unless something prevents and hinders it. So, too, with heavy and light: light is generated from heavy, e.g. air from water (for water
is first such potentially), and air is actually light, and will at once realize its proper activity unless something prevents it. The activity of lightness consists in the light thing being in a certain place, namely high up: when it is in the contrary place, it is being prevented. The case is similar also in regard to quantity and quality. But, be it noted, this is the question we are trying to answer—how can we account for the motion of light things and heavy things to their proper places? The reason for it is that they have a natural tendency towards a certain position; and this is what it is to be light or heavy, the former being determined by an upward, the latter by a downward, tendency. As we have said, a thing may be potentially light or heavy in more ways than one. Thus not only when a thing is water is it in a sense potentially light, but when it has become air it may be still potentially light; for it may be that through some hindrance it does not occupy an upper position, whereas, if what hinders it is removed, it realizes its activity and continues to rise higher. The process whereby what is of a certain quality changes to a condition of actuality is similar: thus the exercise of knowledge follows at once upon the possession of it unless something prevents it. So, too, what is of a certain quantity extends itself over a certain space unless something prevents it. The thing in a sense is and in a sense is not moved by one who moves what is obstructing and preventing its motion—e.g. one who pulls away a pillar or one who removes the stone from a wineskin in the water is the accidental cause of motion; and in the same way the rebounding ball is moved not by the wall but by the thrower. So it is clear that in all these cases the thing does not move itself, but it contains within itself the source of motion—not of moving something or of causing motion, but of suffering it.

If then the motion of all things that are in motion is either natural or unnatural and violent, and all things whose motion is violent and unnatural are moved by something, and something other than themselves, and again all things whose motion is natural are moved by something—both those that are moved by themselves and those that are not moved by themselves (e.g. light things and heavy things, which are moved either by that which brought the thing into existence and made it light and heavy, or by that which released what was hindering and preventing it); then all things that are in motion must be moved by something.

§ 5 · Now this may come about in either of two ways, either not because of the mover itself, but because of something else which moves the mover, or because of the mover itself. Further, in the latter case, either the mover immediately precedes the last thing in the series, or there may be one or more intermediate links: e.g. the stick moves the stone and is moved by the hand, which again is moved by
the man; in the man, however, we have reached a mover that is not so in virtue of being moved by something else. Now we say that the thing is moved both by the last and by the first of the movers, but more strictly by the first, since the first moves the last, whereas the last does not move the first, and the first will move the thing without the last, but the last will not move it without the first: e.g. the stick will not move anything unless it is itself moved by the man. If then everything that is in motion must be moved by something, and by something either moved by something else or not, and in the former case there must be some first mover that is not itself moved by anything else, while in the case of the first mover being of this kind there is no need of another (for it is impossible that there should be an infinite series of movers, each of which is itself moved by something else, since in an infinite series there is no first term)—if then everything that is in motion is moved by something, and the first mover is moved but not by anything else, it must be moved by itself.

This same argument may also be stated in another way as follows. Every mover moves something and moves it with something, either with itself or with something else: e.g. a man moves a thing either himself or with a stick, and a thing is knocked down either by the wind itself or by a stone propelled by the wind. But it is impossible for that with which a thing is moved to move it without being moved by that which imparts motion by its own agency; but if a thing imparts motion by its own agency, it is not necessary that there should be anything else with which it imparts motion, whereas if there is a different thing with which it imparts motion, there must be something that imparts motion not with something else but with itself, or else there will be an infinite series. If, then, anything is a mover while being itself moved, the series must stop somewhere and not be infinite. Thus, if the stick moves something in virtue of being moved by the hand, the hand moves the stick; and if something else moves with the hand the hand also is moved by something different from itself. So when motion by means of an instrument is at each stage caused by something different from the instrument, this must always be preceded by something else which imparts motion with itself. Therefore, if this is moving and there is nothing else that moves it, it must move itself. So this reasoning also shows that, when a thing is moved, if it is not moved immediately by something that moves itself, the series brings us at some time or other to a mover of this kind.

And if we consider the matter in yet another way we shall get this same result. If everything that is in motion is moved by something that is in motion, either this is an accidental attribute of the things (so that each of them moves something while being itself in motion, but not because it is itself in motion) or it belongs to
them in their own right. If, then, it is an accidental attribute, it is not necessary that that which causes motion should be in motion; and if this is so it is clear that there may be a time when nothing that exists is in motion, since the accidental is not necessary but contingent. Now if we assume something possible, nothing impossible will follow (though something false may). But the non-existence of motion is an impossibility; for we have shown above that there must always be motion.

Moreover, the conclusion to which we have been led is a reasonable one. For there must be three things—the moved, the mover, and the instrument of motion. Now the moved must be in motion, but it need not move anything else; the instrument of motion must both move something else and be itself in motion (for it changes together with the moved, with which it is in contact and continuous, as is clear in the case of things that move other things locally, in which case the two things must up to a certain point be in contact); and the mover—that is to say, that which causes motion in such a manner that it is not merely the instrument of motion—must be unmoved. Now we see the last things, which have the capacity of being in motion, but do not contain a motive principle, and also things which are in motion but are moved by themselves and not by anything else: it is reasonable, therefore, not to say necessary, to suppose the existence of the third term also, that which causes motion but is itself unmoved. So, too, Anaxagoras is right when he says that Mind is impassive and unmixed, since he makes it the principle of motion; for it could cause motion in this way only by being itself unmoved, and have control only by being unmixed.

Now if the mover is not accidentally but necessarily in motion—so that, if it were not in motion, it would not move anything—then the mover, in so far as it is in motion, must be moved either with the same kind of motion, or with a different kind—either that which is heating, I mean, is itself becoming hot, that which is making healthy becoming healthy, and that which is causing locomotion in process of locomotion, or else that which is making healthy is in process of locomotion, and that which is causing locomotion in process of increase. But it is evident that this is impossible. For we must apply this to the very lowest species into which motion can be divided: e.g. we must say that if someone is teaching some lesson in geometry, he is also being taught that same lesson in geometry, and that if he is throwing he is being thrown in just the same manner. Or if we reject this assumption we must say that one kind of motion is derived from another; e.g. that that which is causing locomotion is in process of increase, that which is causing this increase is being altered by something else, and that which is causing this alteration is suffering some different kind of motion. But the series must stop.
somewhere, since the kinds of motion are limited; and if we say that the series
bends back, i.e. that that which is causing alteration is in process of locomotion,
we do no more than if we had said at the outset that that which is causing locomo-
tion is in process of locomotion, and that one who is teaching is being taught; for
it is clear that everything that is moved is also moved by the mover that is further
back in the series—in fact the earlier mover is that which more strictly moves it.
But this is of course impossible; for it involves the consequence that one who is
teaching is learning whereas teaching necessarily implies possessing knowledge,
and learning not possessing it. Still more unreasonable is the consequence that,
since everything that is moved is moved by something that is itself moved, ev-
erything that has a capacity for causing motion is capable of being moved: i.e.
it will have a capacity for being moved in the sense in which one might say that
everything that has a capacity for making healthy has a capacity for being made
healthy, and that which has a capacity for building has a capacity for being built,
either immediately or through one or more links (as it will if, while everything
that has a capacity for causing motion has a capacity for being moved by some-
thing else, the motion that it has the capacity for suffering is not that with which it
affects what is next to it, but a motion of a different kind; e.g. that which has a ca-
pacity for making healthy might have a capacity for learning: the series, however,
could be traced back, as we said before, until at some time or other we arrive at the
same kind of motion). Now the first alternative is impossible, and the second is
fantastic: it is absurd that that which has a capacity for causing alteration should
necessarily have a capacity for increase. It is not necessary, therefore, that that
which is moved should always be moved by something else that is itself moved:
so there will be an end to the series. Consequently the first thing that is in motion
will derive its motion either from something that is at rest or from itself. But if
there were any need to consider which of the two, that which moves itself or that
which is moved by something else, is the cause and principle of motion, everyone
would decide for the former; for that which is in itself a cause is always prior to
that which is so in virtue of something else.

We must therefore make a fresh start and consider the question: if a thing
moves itself, in what sense and in what manner does it do so? Now everything
that is in motion must be infinitely divisible; for it has been shown already in
our general course on Physics, that everything that is in motion in its own right is
continuous. Now it is impossible that that which moves itself should in its entirety
move itself; for then, while being specifically one and indivisible, it would as a
whole both undergo and cause the same locomotion or alteration; thus it would at
the same time be both teaching and being taught, or both restoring to and being
restored to the same health. Moreover, we have established the fact that it is
the movable that is moved; and this moves potentially, not in fulfilment, and the
potential is in process to fulfilment, and motion is an incomplete fulfilment of the
movable. The mover on the other hand is already in actuality: e.g. it is that which
is hot that produces heat, and in general that which produces the form possesses it.
Consequently, the same thing in respect of the same thing will be at the same time
both hot and not hot. So, too, in every other case where the mover must have the
synonymous property. Therefore when a thing moves itself it is one part of it that
is the mover and another part that is moved. But it is not self-moving in the sense
that each of the two parts is moved by the other part: the following considerations
make this evident. If each of the two parts is to move the other, there will be
no first mover; for that which is earlier in the series is more the cause of its being
moved than that which comes next, and will be more truly the mover; for we found
that there are two kinds of mover, that which is itself moved by something else and
that which derives its motion from itself; and that which is further from the thing
that is moved is nearer to the principle of motion than that which is intermediate.
Again, there is no necessity for the mover to be moved by anything but itself; so
it can only be accidentally that the other part moves it in return. I take then the
possible case of its not moving it: then there will be a part that is moved and a part
that is an unmoved mover. Again, there is no necessity for the mover to be moved
in return: on the contrary the necessity that there should always be motion makes
it necessary that there should be some mover that is either unmoved or moved by
itself. Again, we should then have a thing undergoing the same motion that it is
causing—that which is producing heat, therefore, being heated. But as a matter
of fact that which primarily moves itself cannot contain either a single part that
moves itself or a number of parts each of which moves itself. For, if the whole is
moved by itself, it must be moved either by some part of itself or as a whole by
itself as a whole. If, then, it is moved in virtue of some part of it being moved by
that part itself, it is this part that will be the primary self-mover, since, if this part
is separated from the whole, the part will still move itself, but the whole will do so
no longer. If on the other hand the whole is moved by itself as a whole, it must be
accidentally that the parts move themselves; and therefore, their self-motion not
being necessary, we may take the case of their not being moved by themselves.
Therefore in the whole of the thing we may distinguish that which imparts motion
without itself being moved and that which is moved; for only in this way is it
possible for a thing to be self-moving. Further, if the whole moves itself we may
distinguish in it that which imparts the motion and that which is moved: so while
we say that AB is moved by itself, we may also say that it is moved by A. And
since that which imparts motion may be either a thing that is moved by something else or a thing that is unmoved, and that which is moved may be either a thing that imparts motion to something else or a thing that does not, that which moves itself must be composed of something that is unmoved but imparts motion and also of something that is moved but does not necessarily impart motion but may or may not do so. Thus let A be something that imparts motion but is unmoved, B something that is moved by A and moves C, C something that is moved by B but moves nothing (granted that we eventually arrive at C we may take it that there is only one intermediate term, though there may be more). Then the whole ABC moves itself. But if I take away C, AB will move itself, A imparting motion and B being moved, whereas C will not move itself or in fact be moved at all. Nor again will BC move itself apart from A; for B imparts motion only through being moved by something else, not through being moved by any part of itself. So only AB moves itself. That which moves itself, therefore, must comprise something that imparts motion but is unmoved and something that is moved but does not necessarily move anything else; and each of these two things, or at any rate one of them, must be in contact with the other. If, then, that which imparts motion is continuous—that which is moved must of course be so—the one will be in contact with the other. So it is clear that it is not through some part of the whole being of such a nature as to be capable of moving itself that the whole moves itself: it moves itself as a whole, both being moved and imparting motion through containing a part that imparts motion and a part that is moved. It does not impart motion as a whole nor is it moved as a whole: it is A that imparts motion and B alone that is moved.

Here a difficulty arises: if something is taken away from A (supposing that that which imparts motion but is unmoved is continuous), or from B, the part that is moved, will the remainder of A continue to impart motion or the remainder of B continue to be moved? If so, it will not be AB primarily that is moved by itself, since, when something is taken away from AB, the remainder of AB will continue to move itself. Perhaps there is nothing to prevent each of the two parts, or at any rate one of them, that which is moved, being potentially divided though actually undivided, so that it if is divided it will not continue in the possession of the same nature; and so there is nothing to prevent self-motion residing primarily in things that are potentially divisible.

From what has been said, then, it is evident that that which primarily imparts motion is unmoved; for, whether that which is in motion but moved by something leads straight to the first unmoved, or whether it leads to what is in motion but moves itself and stops its own motion, on both suppositions we have the result
that in all cases of things being in motion that which primarily imparts motion is unmoved.

§ 6 · Since there must always be motion without intermission, there must necessarily be something eternal, whether one or many, that first imparts motion, and this first mover must be unmoved. Now the question whether each of the things that are unmoved but impart motion is eternal is irrelevant to our present argument; but the following considerations will make it clear that there must necessarily be some such thing, which, while it has the capacity of moving something else, is itself unmoved and exempt from all change, both unqualified and accidental. Let us suppose, if you will, that in the case of certain things it is possible for them at different times to be and not to be, without any process of becoming and perishing (in fact it would seem to be necessary, if a thing that has not parts at one time is and at another time is not, that any such thing should without undergoing any change at one time be and at another time not be). And let us further suppose it possible that some principles that are unmoved but capable of imparting motion at one time are and at another time are not. Even so, this cannot be true of all such principles, since there must clearly be something that causes things that move themselves at one time to be and at another not to be. For, since nothing that has not parts can be in motion, everything which moves itself must have magnitude, though nothing that we have said makes this necessarily true of every mover. So the fact that some things become and others perish, and that this is so continuously, cannot be caused by any one of those things that, though they are unmoved, do not always exist; nor again some be caused by some and others by others. The eternity and continuity of the process cannot be caused either by any one of them singly or by the sum of them, because this causal relation must be eternal and necessary, whereas the sum of these movers is infinite and they do not all exist together. It is clear, then, that though there may be countless instances of the perishing of movers unmoved, and though many things that move themselves perish and are succeeded by others that come into being, and though one thing that is unmoved moves one thing while another moves another, nevertheless there is something that comprehends them all, and that as something apart from each one of them, and this it is that is the cause of the fact that some things are and others are not and of the continuous process of change; and this causes the motion of the other movers, while they are the causes of the motion of other things. Motion, then, being eternal, the first mover, if there is but one, will be eternal also; if there are more than one, there will be a plurality of such eternal movers. We ought, however, to suppose that there is one rather than many, and a finite rather than an infinite number. When the consequences
of either assumption are the same, we should always assume that things are finite rather than infinite in number, since in things constituted by nature that which is finite and that which is better ought, if possible, to be present rather than the reverse; and here it is sufficient to assume only one mover, the first of unmoved things, which being eternal will be the principle of motion to everything else.

The following argument also makes it evident that the first mover must be something that is one and eternal. We have shown that there must always be motion. That being so, motion must be continuous, because what is always is continuous, whereas what is in succession is not continuous. But further, if motion is continuous, it is one; and it is one only if the mover and the moved are each of them one, since in the event of a thing’s being moved now by one thing and now by another the whole motion will not be continuous but successive.

Moreover a conviction that there is a first unmoved something may be reached not only from the foregoing arguments, but also by considering again the principles operative in movers. Now it is evident that among existing things there are some that are sometimes in motion and sometimes at rest. This fact has served to make it clear that it is not true either that all things are in motion or that all things are at rest or that some things are always at rest and the remainder always in motion: on this matter proof is supplied by things that fluctuate between the two and have the capacity of being sometimes in motion and sometimes at rest. The existence of things of this kind is clear to all; but we wish to explain also the nature of each of the other two kinds and show that there are some things that are always unmoved and some things that are always in motion. In the course of our argument directed to this end we established the fact that everything that is in motion is moved by something, and that the mover is either unmoved or in motion, and that, if it is in motion, it is moved at each stage either by itself or by something else; and so we proceeded to the position that of things that are moved, the principle of things that are in motion is that which moves itself, and the principle of the whole series is the unmoved. Further it is evident from actual observation that there are things that have the characteristic of moving themselves, e.g. the animal kingdom and the whole class of living things. This being so, then, the view was suggested that perhaps it may be possible for motion to come to be in a thing without having been in existence at all before, because we see this actually occurring in animals: they are unmoved at one time and then again they are in motion, as it seems. We must grasp the fact, therefore, that animals move themselves only with one kind of motion, and that this is not strictly originated by them. The cause of it is not

\[\text{52}\text{Retaining }\textit{ton kinounton}, \text{excised by Ross.}\]
derived from the animal itself: there are other natural motions in animals, which they do not experience through their own instrumentality, e.g. increase, decrease, and respiration: these are experienced by every animal while it is at rest and not in motion in respect of the motion set up by its own agency; here the motion is caused by the environment and by many things that enter into the animal: thus in some cases the cause is nourishment—when it is being digested animals sleep, and when it is being distributed they awake and move themselves, the first principle of this motion being thus originally derived from outside. Therefore animals are not always in continuous motion by their own agency: it is something else that moves them, itself being in motion and changing as it comes into relation with each several thing that moves itself. (Moreover in all these things the first mover and cause of their self-motion is itself moved by itself, though in an accidental sense: that is to say, the body changes its place, so that that which is in the body changes its place also and moves itself by leverage.) Hence we may be sure that if a thing belongs to the class of unmoved things which move themselves accidentally, it is impossible that it should cause continuous motion. So the necessity that there should be motion continuously requires that there should be a first mover that is unmoved even accidentally, if, as we have said, there is to be in the world of things an unceasing and undying motion, and the world is to remain self-contained and within the same limits; for if the principle is permanent, the universe must also be permanent, since it is continuous with the principle. (We must distinguish, however, between accidental motion of a thing by itself and such motion by something else, the former being confined to perishable things, whereas the latter belongs also to certain principles of heavenly bodies, of all those, that is to say, that experience more than one locomotion.)

259b32-260a10

And further, if there is always something of this nature, a mover that is itself unmoved and eternal, then that which is first moved by it must also be eternal. Indeed this is clear also from the consideration that there would otherwise be no becoming and perishing and no change of any kind in other things, if there were nothing in motion to move them; for the motion imparted by the unmoved will always be imparted in the same way and be one and the same, since the unmoved does not itself change in relation to that which is moved by it. But that which is moved by something that, though it is in motion, is moved directly by the unmoved stands in varying relations to the things that it moves, so that the motion that it causes will not be always the same: by reason of the fact that it occupies contrary positions or assumes contrary forms it will produce contrary motions in each several thing that it moves and will cause it to be at one time at rest and at another time in motion.
The foregoing argument, then, has served to clear up the point about which we raised a difficulty at the outset—why is it that instead of all things being either in motion or at rest, or some things being always in motion and the remainder always at rest, there are things that are sometimes in motion and sometimes not? The cause of this is now plain: it is because, while some things are moved by an eternal unmoved mover and are therefore always in motion, other things are moved by something that is in motion and changing, so that they too must change. But the unmoved mover, as has been said, since it remains simple and unvarying and in the same state, will cause motion that is one and simple.

§ 7 · This matter will be made clearer, however, if we start afresh from another point. We must consider whether it is or is not possible that there should be a continuous motion, and, if it is possible, which this motion is, and which is the primary motion; for it is plain that if there must always be motion, and a particular motion is primary and continuous, then it is this motion that is imparted by the first mover, and so it is necessarily one and the same and continuous and primary.

Now of the three kinds of motion that there are—motion in respect of magnitude, motion in respect of affection, and motion in respect of place—it is this last, which we call locomotion, that must be primary. For it is impossible that there should be increase without the previous occurrence of alteration; for that which is increased, although in a sense it is increased by what is like itself, is in a sense increased by what is unlike itself: thus it is said that contrary is nourishment to contrary; but one thing gets attached to another by becoming like it. There must be alteration then, in that there is this change from contrary to contrary. But the fact that a thing is altered requires that there should be something that alters it, something that makes the potentially hot actually hot: so it is plain that the mover does not maintain a uniform relation to it but is at one time nearer to and at another farther from that which is altered; and we cannot have this without locomotion. If, therefore, there must always be motion, there must also always be locomotion as the primary motion, and, if there is a primary as distinguished from a secondary form of locomotion, it must be the primary form. Again, all affections have their origin in condensation and rarefaction: thus heavy and light, soft and hard, hot and cold, are considered to be forms of density and rarity. But condensation and rarefaction are combination and separation, processes in virtue of which substances are said to become and perish; and in being combined and separated things must change in respect of place. And further, when a thing is increased or decreased its magnitude changes in respect of place.

Again, there is another point of view from which it will be clearly seen that
locomotion is primary. As in the case of other things so too in the case of motion
the word ‘primary’ may be used in several ways. A thing is said to be prior to
other things when, if it does not exist, the others will not exist, whereas it can exist
without the others; and there is also priority in time and priority in being. Now
there must be motion continuously, and it may exist continuously either by being
continuous or by being successive but rather by being continuous; and it is better
that it should be continuous rather than successive motion, and we always assume
the presence in nature of the better, if it be possible; since, then, continuous motion
is possible (this will be proved later: for the present let us take it for granted),
and no other motion can be continuous except locomotion, locomotion must be
primary. For there is no necessity for the subject of locomotion to be the subject
either of increase or of alteration, nor need it become or perish; on the other hand
there cannot be any one of these processes without the existence of the continuous
motion imparted by the first mover.

Again, locomotion must be primary in time; for this is the only motion possi-
ble for eternal things. It is true indeed that, in the case of any individual thing that
has a becoming, locomotion must be the last of its motions; for after its becoming
it first experiences alteration and increase, and locomotion is a motion that be-
longs to such things only when they are perfected. But there must previously be
something else that is in process of locomotion to be the cause of the becoming of
things that become, without itself being in process of becoming, as e.g. the begot-
ten is preceded by what begot it; otherwise becoming might be thought to be the
primary motion on the ground that the thing must first become. But though this is
so in the case of any individual thing that becomes, nevertheless before anything
becomes, something else must be in motion, not itself becoming but being, and
before this there must again be something else. And since becoming cannot be
primary—for, if it were, everything that is in motion would be perishable—it is
plain that no one of the motions next in order can be prior to locomotion. By the
motions next in order I mean increase and then alteration, decrease, and perishing.
All these are posterior to becoming; consequently, if not even becoming is prior
to locomotion, then no one of the other processes of change is so either.

In general, that which is becoming appears as something imperfect and pro-
ceeding to a principle; and so what is posterior in the order of becoming is prior
in the order of nature. Now all things that go through the process of becoming ac-
quire locomotion last. It is this that accounts for the fact that some living things,
e.g. plants and many kinds of animals, owing to lack of the requisite organ,⁵³ are

⁵³ Retaining *tou organou*, which Ross excises.
entirely without motion, whereas others acquire it in the course of their being perfected. Therefore, if the degree in which things possess locomotion corresponds to the degree in which they have realized their natural development, then this motion must be prior to all others in respect of being; and not only for this reason but also because a thing that is in motion loses its being less in the process of locomotion than in any other kind of motion: it is the only motion that does not involve a change of being in the sense in which there is a change in quality when a thing is altered and a change in quantity when a thing is increased or decreased. Above all it is plain that this motion, motion in respect of place, is what is in the strictest sense produced by that which moves itself; but it is the self-mover that we declare to be the principle of things that are moved and impart motion and the primary source for things that are in motion.

It is clear, then, from the foregoing arguments that locomotion is the primary motion. We have now to show which kind of locomotion is primary. The same process of reasoning will also make clear at the same time the truth of the assumption we have made both now and at a previous stage that it is possible that there should be a motion that is continuous and eternal. Now it is clear from the following considerations that no other motion can be continuous. Every other motion and change is from an opposite to an opposite: thus for the processes of becoming and perishing the limits are what is and what is not, for alteration the contrary affections, and for increase and decrease either greatness and smallness or perfection and imperfection of magnitude; and changes to contraries are contrary changes. Now a thing that is undergoing any particular kind of motion, but though previously existent has not always undergone it, must previously have been at rest. It is clear, then, that for the changing thing the contraries will be states of rest. And we have a similar result in the case of changes; for becoming and perishing, whether regarded without qualification or as affecting something in particular, are opposites: therefore provided it is impossible for a thing to undergo opposite changes at the same time, the change will not be continuous, but a period of time will intervene between the opposite processes. The question whether these contradictory changes are contraries or not makes no difference, provided only it is impossible for them both to be present to the same thing at the same time: the point is of no importance to the argument. Nor does it matter if the thing need not rest in the contradictory state, or if there is no change contrary to rest: it may be true that what is not is not at rest, and that perishing is a process to what is not. All that matters is the intervention of a time: it is this that prevents the change from being continuous; so, too, in our previous instances the important thing was not the relation of contrariety but the impossibility of the two processes being present
at the same time. And there is no need to be disturbed by the fact that there may be more than one contrary to the same thing, that motion will be contrary both to rest and to motion in the contrary direction. We have only to grasp the fact that motion is in a sense the opposite both of a state of rest and of the contrary motion, in the same way as the equal and the mean is the opposite both of that which surpasses it and of that which it surpasses, and that it is impossible for the opposite motions or changes to be present to a thing at the same time. Furthermore, in the case of becoming and perishing it would seem to be an utterly absurd thing if as soon as anything has become it must necessarily perish and cannot continue to exist for any time; and this might generate a similar belief in the other cases, since it is natural that they should all be uniform.

§ 8 · Let us now proceed to maintain that it is possible that there should be an infinite motion that is single and continuous, and that this motion is rotatory motion. The motion of everything that is in process of locomotion is either rotatory or rectilinear or a compound of the two: consequently, if one of the former two is not continuous, that which is composed of them both cannot be continuous either. Now it is plain that if the locomotion of a thing is rectilinear and finite it is not continuous locomotion; for the thing must turn back, and that which turns back in a straight line undergoes two contrary locomotions, since, so far as place is concerned, upward motion is the contrary of downward motion, forward motion of backward, and motion to the left of motion to the right, these being the pairs of contraries in the sphere of place. But we have already defined single and continuous motion to be motion of a single thing in a single period of time and operating within a sphere admitting of no further specific differentiation (for we have three things to consider, first that which is in motion, e.g. a man or a god, secondly the 'when', that is to say, the time, and thirdly the sphere within which it operates, which may be either place or affection or form or magnitude). Now contraries are specifically different and not one; and within the sphere of place we have the above-mentioned distinctions. Moreover we have an indication that motion from A to B is the contrary of motion from B to A in the fact that, if they occur at the same time, they arrest and stop each other. And the same is true in the case of a circle: the motion from A towards B is the contrary of the motion from A towards C; for even if they are continuous and there is no turning back they arrest each other, because contraries annihilate or obstruct one another. On the other hand lateral motion is not the contrary of upward motion. But what shows most clearly that rectilinear motion cannot be continuous is the fact that turning back necessarily implies coming to a stand, not only when it is a straight line that is traversed, but
also in the case of locomotion in a circle (which is not the same thing as rotatory locomotion; for a thing may either proceed on its course without a break or turn back again when it has reached the same point from which it started). We may assure ourselves of the necessity of this coming to a stand not only by perception but also by argument. We may start as follows: we have three points, beginning, middle, and end; and the middle is both beginning and end relatively to each of the others, being one in number but two in definition. We have further the distinction between the potential and the actual. So in the straight line any one of the points lying between the two extremes is potentially a middle-point; but it is not actually so unless that which is in motion divides the line by coming to a stand at that point and beginning its motion again: thus the middle-point becomes both a beginning and an end, a beginning of the latter part and an end of the first part. This is the case e.g. when A in the course of its locomotion comes to a stand at B and starts again towards C; but when its motion is continuous A cannot either have come to be or have ceased to be at the point B: it can only have been there at a now, and not in any period of time except the whole54 of which the now is a dividing-point. To maintain that it has come to be and ceased to be there will involve the consequence that A in the course of its locomotion will always be coming to a stand; for it is impossible that A should simultaneously have come to be at B and ceased to be there, so that the two things must have happened at different points of time, and therefore there will be the intervening period of time: consequently A will be in a state of rest at B, and similarly at all other points, since the same reasoning holds good in every case. When to A, that which is in the process of locomotion, B, the middle-point, serves both as an end and as a beginning, A must come to a stand at B, because it makes it two just as one might do in thought. However, the point A is the beginning at which it has ceased to be, and it is at C that it has come to be when its course is finished and it comes to a stand. So this is how we must meet the difficulty that then arises, which is as follows. Suppose the line E is equal to F; that A proceeds in continuous locomotion from the extreme point to C, and that, at the moment when A is at the point B, D is proceeding in uniform locomotion and with the same velocity as A from the extremity of F to G: then D will have reached G before A has reached C; for that which makes an earlier start and departure must make an earlier arrival. For A has not simultaneously come to be and ceased to be at B, which is why it is late. For if it does both simultaneously, it will not be late—for this to happen it will be necessary that it should come to a stand there. Therefore we must not hold that when A came to be at

54Omitting to ABG in line 31.
B, D was at the same time in motion from the extremity of F; for the fact of A’s having come to be at B will involve its ceasing to be there, and the two events will not be simultaneous, whereas the truth is that A is at B at a sectional point of time and does not occupy time there. In this case, therefore, where the motion of a thing is continuous, it is impossible to use this form of expression. On the other hand in the case of a thing that turns back in its course we must do so. For suppose G in the course of its locomotion proceeds to D and then turns back and proceeds downwards again: then the extreme point D has served as beginning and end for it, one point thus serving as two: therefore A must have come to a stand there; it cannot have come to be at D and departed from D simultaneously, for in that case it would simultaneously be there and not be there at the same now. And here we cannot apply the same solution: we cannot argue that G is at D at a sectional point of time and has not come to be or ceased to be there. For here the goal that is reached is necessarily one that is actual, not potential. Now the points in the middle are potential; but this one is actual, and regarded from below it is an end, while regarded from above it is a beginning, so that it stands in these same relations to the motions. Therefore that which turns back in traversing a rectilinear course must come to a stand. Consequently there cannot be a continuous rectilinear motion that is eternal.

The same method should also be adopted in replying to those who ask, in the terms of Zeno’s argument, whether we admit that before any distance can be traversed half the distance must be traversed, that these half-distances are infinite in number, and that it is impossible to traverse distances infinite in number—or some put the same argument in another form, and would have us grant that in the time during which a motion is in progress we should first count the half-motion for every half-distance that we get, so that we have the result that when the whole distance is traversed we have counted an infinite number, which is admittedly impossible. Now in our first discussions of motion we put forward a solution of this difficulty turning on the fact that the period of time contains within itself an infinite number of units: there is no absurdity, we said, in supposing the traversing of infinite distances in infinite time, and the element of infinity is present in the time no less than in the distance. But, although this solution is adequate as a reply to the questioner (the question asked being whether it is impossible in a finite time to traverse or count an infinite number of units), nevertheless as an account of the fact and the truth it is inadequate. For suppose the distance to be left out of account and the question asked to be no longer whether it is possible in a finite time to traverse an infinite number of distances, and suppose that the inquiry is made to refer to the time itself (for the time contains an infinite number
of divisions): then this solution will no longer be adequate, and we must apply
the truth that we enunciated in our recent discussion. In the act of dividing the
continuous distance into two halves one point is treated as two, since we make it
a beginning and an end; and this same result is produced by the act of counting
halves as well as by the act of dividing into halves. But if divisions are made in
this way, neither the distance nor the motion will be continuous; for motion if it is
to be continuous must relate to what is continuous; and though what is continuous
contains an infinite number of halves, they are not actual but potential halves.
If he makes the halves actual, he will get not a continuous but an intermittent
motion. In the case of counting the halves, it is clear that this result follows; for
then one point must be reckoned as two: it will be the end of the one half and
the beginning of the other, if he counts not the one continuous whole but the two
halves. Therefore to the question whether it is possible to pass through an infinite
number of units either of time or of distance we must reply that in a sense it is and
in a sense it is not. If the units are actual, it is not possible; if they are potential, it
is possible. For in the course of a continuous motion the traveller has traversed an
infinite number of units in an accidental sense but not in an unqualified sense; for
though it is an accidental characteristic of the distance to be an infinite number of
half-distances, it is different in essence and being.

It is also plain that unless we hold that the point of time that divides earlier
from later always belongs only to the later so far as the thing is concerned, we
shall be involved in the consequence that the same thing at the same moment is
and is not, and that a thing is not at the moment when it has become. It is true
that the point is common to both times, the earlier as well as the later, and that,
while numerically one and the same, it is not so in definition, being the end of the
one and the beginning of the other; but so far as the thing is concerned it always
belongs to the later affection. Let us suppose a time ACB and a thing D, D being
white in the time A and not white in the time B. Then D is at C white and not
white; for if we were right in saying that it is white during the whole time A, it is
true to call it white at any moment of A, and not white in B, and C is in both A and
B. We must not allow, therefore, that it is white in the whole of A, but must say
that it is so in all of it except the last now C. C already belongs to the later period,
and if in the whole of A not white was becoming and white perishing, at C it had
become or perished. And so either that is the first moment at which it is true to
call the thing not white;\footnote{Omitting \textit{leukon} at line 23; the received text reads: ‘. . . call the thing white or not white’}. or a thing may not be at the moment when it has become
and may be at the moment when it has perished; or else things must at the same

\footnote{Omitting \textit{leukon} at line 23; the received text reads: ‘. . . call the thing white or not white’.
time be white and not white and in general be and not be. Further, if anything that is after having previously not been must become being and is not when it is becoming, time cannot be divisible into indivisible times. For suppose that D was becoming white at A and that at another indivisible time B, consecutive with A, D has already become white and so is white at that moment: then, inasmuch as at A it was becoming white and so was not white and at B it is white, there must have been a becoming between A and B and therefore also a time in which the becoming took place. On the other hand, those who deny indivisibles are not affected by this argument: according to them it has become and is white at the last point of the actual time in which it was becoming white; and this point has no other point consecutive with or in succession to it, whereas indivisible times are successive. Moreover it is clear that if it was becoming white in the whole time A, there was no more time in which it had become and was becoming than the total of the time in which it was merely becoming.

These and such-like, then, are the arguments on which one might rely as being appropriate to the subject matter. If we look at the question generally, the same result would also appear to be indicated by the following arguments. Everything whose motion is continuous must, on arriving at any point in the course of its locomotion, have been previously also in process of locomotion to that point, if it is not forced out of its path by anything: e.g. on arriving at B a thing must also have been in process of locomotion to B, and that not merely when it was near to B, but from the moment of its starting on its course, since there can be no reason for its being so at any particular stage rather than at an earlier one. So, too, in the case of the other kinds of motion. Now we are to suppose that a thing proceeds in locomotion from A and that when it arrives at C it comes again, moving continuously, to A. Then when it is undergoing locomotion from A to C it is at the same time undergoing also its locomotion to A from C: consequently, it is simultaneously undergoing two contrary motions, since the two motions that follow the same straight line are contrary to each other. At the same time it changes from a state in which it is not: so, inasmuch as this is impossible, the thing must come to a stand at C. Therefore the motion is not a single motion, since motion that is interrupted by stationariness is not single.

Further, the following argument will serve better to make this point clear universally in respect of every kind of motion. If the motion undergone by that which is in motion is always one of those already enumerated, and the state of rest that it undergoes is one of those that are the opposites of the motions (for we found no other besides these), and moreover that which is undergoing but does not always undergo a particular motion (by this I mean one of the various specifically
distinct motions, not some particular part of the whole motion) must have been
previously undergoing the state of rest that is the opposite of the motion, the state
of rest being privation of motion; then, inasmuch as the two motions that follow
the same straight line are contrary motions, and it is impossible for a thing to un-
dergo simultaneously two contrary motions, that which is undergoing locomotion
from A to C cannot also simultaneously be undergoing locomotion from C to A;
and since the latter locomotion is not simultaneous with the former but is still to
be undergone, before it is undergone there must occur a state of rest at C; for this,
as we found, is the state of rest that is the opposite of the motion from C. The
foregoing argument, then, makes it plain that the motion is not continuous.

Again, there is the following argument, more appropriate than its predecessors.
At the same time something has ceased to be not white and has become white.
Then if the alteration to white and from white is continuous and does not persist
for any time, at the same time it has ceased to be not white and has become white
and has become not white; for the time of the three will be the same.

Again, from the continuity of the time in which the motion takes place we
cannot infer continuity in the motion, but only successiveness: in fact, how could
contraries, e.g. whiteness and blackness, meet in the same extreme point?

On the other hand, motion on a circular line will be one and continuous; for
here we are met by no impossible consequence: that which is in motion from A
will in virtue of the same direction of energy be simultaneously in motion to A
(since it is in motion to the point at which it will finally arrive), and yet will not
be undergoing two contrary or opposite motions; for a motion to a point and a
motion from that point are not always contraries or opposites: they are contraries
only if they are on the same straight line (for this has points contrary in place,
e.g. the points on a diameter—for they are furthest from one another), and they
are opposites only if they are along the same line. Therefore there is nothing to
prevent the motion being continuous and free from all intermission; for rotatory
motion is motion of a thing from its place to its place, whereas rectilinear motion
is motion from its place to another place.

Moreover rotatory motion is never at the same points, whereas rectilinear mo-
tion repeatedly is so. Now a motion that is always shifting its ground can be
continuous; but a motion that is repeatedly at the same points cannot be so, since
then the same thing would have to undergo simultaneously two opposite motions.
So, too, there cannot be continuous motion in a semicircle or in any other arc of
a circle, since here also the same ground must be traversed repeatedly and two
contrary processes of change must occur. For the beginning and the termination
do not coincide, whereas in motion over a circle they do coincide, and so this is
the only perfect motion.

This analysis shows that the other kinds of motion cannot be continuous either; for in all of them we find that there is the same ground to be traversed repeatedly: thus in alteration there are the intermediate stages, and in quantitative change there are the intervening degrees of magnitude; and in becoming and perishing the same thing is true. It makes no difference whether we take the intermediate stages of the change to be few or many, or whether we add or subtract one; for in either case we find that there is still the same ground to be traversed repeatedly. Thus it is plain from what has been said that those physicists who assert that all sensible things are always in motion are wrong; for their motion must be one or other of the motions just mentioned: in fact they mostly conceive it as alteration (things are always in flux and decay, they say), and they go so far as to speak even of becoming and perishing as a process of alteration. On the other hand, our argument has shown universally of all motions, that no motion admits of continuity except rotatory motion: consequently neither alteration nor increase admits of continuity. So much for the view that there is no change that admits of infinity or continuity except rotatory locomotion.

§ 9 · It can now be shown plainly that rotation is the primary locomotion. Every locomotion, as we said before, is either rotatory or rectilinear or a compound of the two; and the two former must be prior to the last, since they are the elements of which the latter consists. Moreover rotatory locomotion is prior to rectilinear locomotion, because it is more simple and complete. For the line traversed in rectilinear motion cannot be infinite; for there is no such thing as an infinite straight line; and even if there were, it would not be traversed by anything in motion; for the impossible does not happen and it is impossible to traverse an infinite distance. On the other hand rectilinear motion on a finite line is composite if it turns back, i.e. two motions, while if it does not turn back it is incomplete and perishable; and in the order of nature, of definition, and of time alike the complete is prior to the incomplete and the imperishable to the perishable. Again, a motion that admits of being eternal is prior to one that does not. Now rotatory motion can be eternal; but no other motion, whether locomotion or motion of any other kind, can be so, since in all of them rest must occur, and with the occurrence of rest the motion has perished.

The result at which we have arrived, that rotatory motion is single and continuous, and rectilinear motion is not, is a reasonable one. In rectilinear motion we have a definite beginning, end and middle, which all have their place in it in such a way that there is a point from which that which is in motion will begin
and a point at which it will end (for when anything is at the limits of its course, whether at the whence or at the whither, it is in a state of rest). On the other hand in circular motion there are no such definite points; for why should any one point on the line be a limit rather than any other? Any one point as much as any other is alike beginning, middle, and end, so that they are both always and never at a beginning and at an end (so that a sphere is in a way both in motion and at rest; for it continues to occupy the same place). The reason of this is that in this case all these characteristics belong to the centre: that is to say, the centre is alike beginning, middle, and end of the space traversed; consequently since this point is not a point on the circular line, there is no point at which that which is in process of locomotion can be in a state of rest as having traversed its course, because in its locomotion it is proceeding always about a central point and not to an extreme point; and because this remains still, the whole is in a sense always at rest as well as continuously in motion. Our next point gives a convertible result: on the one hand, because rotation is the measure of motions it must be the primary motion (for all things are measured by what is primary); on the other hand, because rotation is the primary motion it is the measure of all other motions. Again, rotatory motion is also the only motion that admits of being regular. In rectilinear locomotion the motion of things in leaving the beginning is not uniform with their motion in approaching the end, since the velocity of a thing always increases proportionately as it removes itself farther from its position of rest; on the other hand rotatory motion alone has by nature no beginning or end in itself but only outside.

As to locomotion being the primary motion, this is a truth that is attested by all who have ever made mention of motion: they all assign their principles of motion to things that impart motion of this kind. Thus separation and combination are motions in respect of place, and the motion imparted by Love and Strife takes these forms, the latter separating and the former combining. Anaxagoras, too, says that Mind, his first mover, separates. Similarly those who assert no cause of this kind but say that void accounts for motion—they also hold that the motion of natural substance is motion in respect of place; for their motion that is accounted for by void is locomotion, and its sphere of operation may be said to be place. Moreover they are of opinion that the primary substances are not subject to any of the other motions, though the things that are compounds of these substances are so subject: the processes of increase and decrease and alteration, they say, are effects of the combination and separation of atoms. It is the same, too, with those who make out that the becoming or perishing of a thing is accounted for by density or rarity; for it is by combination and separation that the place of these things in their systems is determined. Moreover to these we may add those who
make soul the cause of motion; for they say that things that undergo motion have as their first principle that which moves itself; and when animals and all living things move themselves, the motion is motion in respect of place. Finally, we say that a thing is in motion in the strict sense of the term only when its motion is motion in respect of place: if a thing is in process of increase or decrease or is undergoing some alteration while remaining at rest in the same place, we say that it is in motion in some particular respect: we do not say that it is in motion without qualification.

We have argued that there always was motion and always will be motion throughout all time, and we have explained what is the first principle of this eternal motion; we have explained further which is the primary motion and which is the only motion that can be eternal; and we have pronounced the first mover to be unmoved.

§ 10 · We have now to assert that the first mover must be without parts and without magnitude, beginning with the establishment of the premisses on which this conclusion depends.

One of these premisses is that nothing finite can cause motion during an infinite time. We have three things, the mover, the moved, and thirdly that in which the motion takes place, namely the time; and these are either all infinite or all finite or some—that is to say two of them or one of them—finite and some infinite. Let A be the mover, B the moved, and C infinite time. Now let us suppose that D moves E, a part of B. Then the time occupied by this motion cannot be equal to C; for the greater the amount moved, the longer the time occupied. It follows that the time F is not infinite. Now we see that by continuing to add to D I shall use up A and by continuing to add to E I shall use up B; but I shall not use up the time by continually subtracting a corresponding amount from it, because it is infinite. Consequently the part of C which is occupied by all A in moving the whole of B, will be finite. Therefore a finite thing cannot impart to anything an infinite motion. It is clear, then, that it is impossible for the finite to cause motion during an infinite time.

That in no case is it possible for an infinite force to reside in a finite magnitude, can be shown as follows: we take it for granted that the greater force is always that which in less time does an equal amount of work—heating, for example, or sweetening or throwing, or in general causing motion. Then that on which the forces act must be affected to some extent by the finite magnitude possessing an infinite force—in fact to a greater extent than by anything else, since the infinite force is greater than any other. But then there cannot be any time in which its ac-
tion could take place. Suppose that \(A \) is the time occupied by the infinite power in the performance of an act of heating or pushing, and that \(AB \) is the time occupied by a finite power in the performance of the same act: then by adding to the latter another finite power and continually increasing the magnitude of the power so added I shall at some time or other reach a point at which the finite power has completed the motive act in the time \(A \); for by continual addition to a finite magnitude I must arrive at a magnitude that exceeds any assigned limit, and in the same way by continual subtraction I must arrive at one that falls short of any assigned limit. So we get the result that the finite force will occupy the same amount of time in performing the motive act as the infinite force. But this is impossible. Therefore nothing finite can possess an infinite force. So it is also impossible for a finite force to reside in an infinite magnitude. It is true that a greater force can reside in a lesser magnitude; but then a still greater force will reside in a greater. Now let \(AB \) be an infinite magnitude. Then \(BC \) possesses a certain force that occupies a certain time, let us say the time \(EF \), in moving \(D \). Now if I take a magnitude twice as great as \(BC \), the time occupied by this magnitude in moving \(D \) will be half of \(EF \) (assuming this to be the proportion): so we may call this time \(FG \). That being so, by continually taking a greater magnitude in this way I shall never arrive at \(AB \), whereas I shall always be getting a lesser fraction of the time originally given. Therefore the force must be infinite; for it exceeds any finite force if the time occupied by the action of any finite force must also be finite (for if a given force moves something in a certain time, a greater force will do so in a lesser time, but still a definite time, in inverse proportion). But a force must always be infinite—just as a number or a magnitude is—if it exceeds all definite limits. This point may also be proved in another way—by taking a finite magnitude in which there resides a force the same in kind as that which resides in the infinite magnitude, so that this force will be a measure of the finite force residing in the infinite magnitude.

It is plain, then, from the foregoing arguments that it is impossible for an infinite force to reside in a finite magnitude or for a finite force to reside in an infinite magnitude. But first it will be well to discuss a difficulty that arises in connexion with locomotion. If everything that is in motion with the exception of things that move themselves is moved by something, how is it that some things, e.g. things thrown, continue to be in motion when their mover is no longer in contact with them? If we say that the mover in such cases moves something else at the same time, e.g. the air, and that this in being moved is also a mover, then it will similarly be impossible for this to be in motion when the original mover is not in contact with it or moving it: all the things moved would have to be in
motion simultaneously and also to have ceased simultaneously to be in motion when the original mover ceases to move them, even if, like the magnet, it makes that which it has moved capable of being a mover. Therefore, we must say that the original mover gives the power of being a mover either to air or to water or to something else of the kind, naturally adapted for imparting and undergoing motion; but this thing does not cease simultaneously to impart motion and to undergo motion: it ceases to be in motion at the moment when its mover ceases to move it, but it still remains a mover, and so it causes something else consecutive with it to be in motion, and of this again the same may be said. The motion ceases when the motive force produced in one member of the consecutive series is at each stage less, and it finally ceases when one member no longer causes the next member to be a mover but only causes it to be in motion. The motion of these last two—of the one as mover and of the other as moved—must cease simultaneously, and with this the whole motion ceases. Now the things in which this motion is produced are things that admit of being sometimes in motion and sometimes at rest, and the motion is not continuous but only appears so; for it is motion of things that are either successive or in contact, there being not one mover but a number consecutive with one another. That is why motion of this kind takes place in air and water. Some say that it is mutual replacement; but the difficulty raised cannot be solved otherwise than in the way we have described. Mutual replacement makes all the members of the series move and impart motion simultaneously, so that their motions also cease simultaneously; but there appears to be continuous motion in a single thing, and therefore, since it cannot be moved by the same mover, the question is, what moves it?

Since there must be continuous motion in the world of things, and this is a single motion, and a single motion must be a motion of a magnitude (for that which is without magnitude cannot be in motion), and of a single magnitude moved by a single mover (for otherwise there will not be continuous motion but a consecutive series of separate motions), then if the mover is a single thing, it is either in motion or unmoved: if, then, it is in motion, it will have to keep pace with that which it moves and itself be in process of change, and it will also have to be moved by something: so we have a series that must come to an end, and a point will be reached at which motion is imparted by something that is unmoved. Thus we have a mover that has no need to change along with that which it moves but will be able to cause motion always (for the causing of motion under these conditions involves no effort); and this motion alone is regular, or at least it is so in a higher degree than any other, since the mover is never subject to any change. So, too, in order that the motion may continue to be of the same character, the moved must
not be subject to change in relation to it. So it must occupy either the centre or the circumference, since these are the principles. But the things nearest the mover are those whose motion is quickest, and in this case it is the motion of the circumference that is the quickest: therefore the mover occupies the circumference.

There is a difficulty in supposing it to be possible for anything that is in motion to cause motion continuously and not merely in the way in which it is caused by something repeatedly pushing (in which case the continuity amounts to no more than successiveness). Such a mover must either itself continue to push or pull or perform both these actions, or else the action must be taken up by something else and be passed on from one mover to another (the process that we described before as occurring in the case of things thrown, since the air, being divisible, is a mover in virtue of the fact that different parts of the air are moved one after another); and in either case the motion cannot be a single motion, but only a consecutive series of motions. The only continuous motion, then, is that which is caused by the unmoved mover; for it remains always invariable, so that its relation to that which it moves remains also invariable and continuous.

Now that these points are settled, it is clear that the first unmoved mover cannot have any magnitude. For if it has magnitude, this must be either a finite or an infinite magnitude. Now we have already proved in our course on Physics that there cannot be an infinite magnitude; and we have now proved that it is impossible for a finite magnitude to have an infinite force, and also that it is impossible for a thing to be moved by a finite magnitude during an infinite time. But the first mover causes a motion that is eternal and causes it during an infinite time. It is clear, therefore, that is indivisible and is without parts and without magnitude.