Strict coherence on many-valued events

We investigate the property of strict coherence in the setting of many-valued logics. Our main results read as follows: (i) a map from an MV-algebra to [0,1] is strictly coherent if and only if it satisfies Carnap’s regularity condition, and (ii) a [0,1]-valued book on a finite set of many-valued events is strictly coherent if and only if it extends to a faithful state of an MV-algebra that contains them. Remarkably this latter result allows us to relax the rather demanding conditions for the Shimony-Kemeny characterisation of strict coherence put forward in the mid 1950s in this Journal.

KEYWORDS: s. Probability logic, strict coherence, MV-algebras, faithful states, many-valued logics.

Flaminio, T., H. Hosni, and F. Montagna. (2018). “Strict Coherence on Many Valued Events” Journal of Symbolic Logic . 83(1), 55-69. DOI:10.1017/jsl.2017.34

Big Data in Head and Neck Cancer

Head and neck cancers can be used as a paradigm for exploring “big data” applications in oncology. Computational strategies derived from big data science hold the promise of shedding new light on the molecular mechanisms driving head and neck cancer pathogenesis, identifying new prognostic and predictive factors, and discovering potential therapeutics against this highly complex disease. Big data strategies integrate robust data input, from radiomics, genomics, and clinical-epidemiological data to deeply describe head and neck cancer characteristics. Thus, big data may advance research generating new knowledge and improve head and neck cancer prognosis supporting clinical decision-making and development of treatment recommendations.

KEYWORDS: Big data; Decision support system; Evidence based medicine; Forecasting; Genomics; Guidelines; Head and neck cancer; Machine learning; Oncology; Radiomics; Radiotherapy; Support vector machine; Surgery

Resteghini C, Trama A, Borgonovi E, Hosni H, Corrao G, Orlandi E, Calareso G, De Cecco L, Piazza C, Mainardi L, Licitra L. “Big Data in Head and Neck Cancer”. Current Treatment Options in Oncology 2018 Oct 25;19(12):62. doi: 10.1007/s11864-018-0585-2.

Read online

We’re hiring!


Project: Logical Foundations and Applications of Depth-Bounded Probability
Duration: 2 years
We are looking for a very strong and highly motivated postdoctoral researcher in Logic to join Marcello D’Agostino and Hykel Hosni who are the PIs of the project “Logical Foundations and Applications of Depth-Bounded Probability”. This project is part of a 5 years “Excellence Scheme” which has been awarded in 2017 to The Department of Philosophy at the University of Milan “La Statale” in recognition of its leading role in research and innovative teaching.

Continue reading →

Data science and the art of modelling

Datacentric enthusiasm is growing strong across a variety of domains.
Whilst data science asks unquestionably exciting scientific questions, we argue that its
contributions should not be extrapolated from the scientific context in which they originate. In particular we suggest that the simple-minded idea to the effect that data can be seen as a replacement for scientific modelling is not tenable.
By recalling some well-known examples from dynamical systems we conclude that data science performs at its best when coupled with the subtle art of modelling.

KEYWORDS: Big data, Scientific modelling

H. Hosni and A. Vulpiani, “Data science and the art of modelling”,  Lettera Matematica International (May 2018)

Read the paper online


Come smettere di preoccuparsi e imparare ad amare l’incertezza

Dall’Avvertenza di Probabilità: come smettere di preoccuparsi e imparare ad amare l’incertezza, Carocci, Città della Scienza, febbraio 2018.

Se andate di fretta, ecco il messaggio centrale:

Probabilità è cultura.

L’affermazione vi sorprende? Allora trovate un po’ di tempo per leggere ché questo libro è stato scritto per voi. E per tutte quelle persone che alla probabilità non pensano
spesso, o magari la associano a sondaggi elettorali
smentiti sistematicamente, o ancora al risultato di imperscrutabili algoritmi per la valutazione, spesso inaffidabile, del rischio finanziario — altro che cultura! 

Il suo scopo è invogliarvi a guardare da vicino alcuni aspetti centrali del ragionamento probabilistico e della cultura dell’incertezza che questo ci aiuta a costruire. Si tratta di una cultura di cui abbiamo un bisogno urgente. Perché l’incertezza è una componente ineliminabile della nostra vita, della società, della natura.
Probabilità: come smettere di preoccuparsi e imparare ad amare l'incertezzaAiutandoci a capirne alcuni aspetti fondamentali, la probabilità ci fornisce una grammatica per pensare ciò che non è, ma potrebbe essere, o per capire che le cose che conosciamo avrebbero potuto essere altrimenti – domande filosofiche profonde che trovano una formulazione particolarmente chiara nella matematica della probabilità. Si tratta di ragionamenti fondamentali alla comprensione scientifica del mondo, ma non solo. Sono necessari per prendere decisioni informate sulla nostra salute, sul nostro benessere e quello delle persone a noi care. Sono necessari alla partecipazione consapevole e attiva di ognuno di noi alla società, e in particolare all’assolvimento del nostro compito di vigilanza democratica dell’operato istituzionale.
Continue reading →

Forecasting in Light of Big Data

Predicting the future state of a system has always been a natural motivation for science and practical applications. Such a topic, beyond its obvious technical and societal relevance, is also interesting from a conceptual point of view. This owes to
the fact that forecasting lends itself to two equally radical, yet opposite methodologies. A reductionist one, based on the first principles, and the naive inductivist one, based only on data. This latter view has recently gained some attention in response to the availability of unprecedented amounts of data and increasingly sophisticated algorithmic analytic techniques. The purpose of this note is to assess critically the role of big data in reshaping the key aspects of forecasting and in particular the claim that bigger data leads to better predictions. Drawing on the representative example of weather forecasts we argue that this is not generally the case. We conclude by suggesting that a clever and context-dependent compromise between modelling and quantitative analysis stands out as the best forecasting strategy, as anticipated nearly a century ago by Richardson and von Neumann.

KEYWORDS: Forecasting, Big Data, Epistemology

H. Hosni and A. Vulpiani, “Forecasting in Light of Big Data”,  Philosophy and Technology (2017). doi:10.1007/s13347-017-0265-3

Preprint available here

The Reasoner, my first editorial

I just took over the editorship of THE REASONER from Jon Williamson who started it ten years ago. I’m very excited about this, and this is my first editorial. Read the whole issue at

Reasoning is naturally multi-disciplinary, inter-disciplinary, inter-sectoral. While those tend to appear as buzzwords in the narrative of funding agencies in Europe and elsewhere, reality’s bitterly different. Reasoners struggle a lot when the workings of academia demand comparison with more focussed areas, both in the Natural and the Social sciences. At that moment, our strength is likely to turn into our weakness. Community building and its consolidation are therefore no less than vital to us.

Continue reading →

Convex MV-Algebras: Many-Valued Logics Meet Decision Theory

This paper introduces a logical analysis of convex combinations within the framework of Lukasiewicz real-valued logic. This provides a natural, albeit as yet unexplored, link between the fields of many-valued logics and decision theory where the notion of convexity plays a central role.

We set out to explore such a link by defining convex operators on MV-algebras, which are the equivalent algebraic semantics of Lukasiewicz logic. This gives us a formal language to reason about the expected value of bounded random variables. As an illustration of the applicability of our framework we present a logical version of the Anscombe-Aumann representation result.

KEYWORDS: MV-algebra, convexity, uncertainty measures, Anscombe-Aumann

Flaminio, T., H. Hosni, and S. Lapenta. 2017. “Convex MV-Algebras: Many-Valued Logics Meet Decision Theory.” Studia Logica (Online First ) DOI: 10.1007/s11225-016-9705-9.